首页|基于改进YOLOv5算法和ResNet50网络的行人检测与识别系统

基于改进YOLOv5算法和ResNet50网络的行人检测与识别系统

扫码查看
行人检测与识别技术在交通管理、智能监控等领域具有重要的应用价值.针对现有行人检测与识别存在的检测精度低、识别困难等问题,提出了一种融合SE注意力模块的YOLOv5 算法和ResNet50 网络的行人检测与识别系统.在Backbone网络中引入SE注意力模块,以捕获更加丰富的特征信息,从而提升模型的检测精度;采用ResNet50 网络对裁剪图片进行识别检索.实验结果表明,该算法的检测精度较高,能够识别复杂场景下的行人,基本满足不同场景下的行人检测与识别要求.
Pedestrian Detection and Recognition System Based on YOLOv5 Algorithm and ResNet50 Network
Pedestrian detection and recognition has an important application value in traffic management,intelligent monitoring and other fields.Aiming at the problems of low detection accuracy and recognition difficulty faced by the existing pedestrian detection and recognition,this study proposes a model of pedestrian detection and recognition system that integrates the YOLOv5 algorithm of attention mechanism and ResNet50 network.By introducing the SE attention mechanism into the YOLOv5 algorithm Backbone network,richer feature information is captured,thus im-proving the detection accuracy of the model.The pedestrian recognition system uses ResNet50 network to recognize and retrieve the detected cropped images.The experimental results show that the algorithm has high detection accu-racy and can recognize pedestrians in complex scenes,basically meeting the requirements of pedestrian detection and recognition in different scenes.

object detectionYOLOv5image recognitionResNetmechanism of attention

雷远彬、赵恩铭、刘光宇、裴燚、刘彪、张吉磊、赵洪一、陈波波

展开 >

大理大学 工程学院,云南 大理 671003

目标检测 YOLOv5 图像识别 ResNet 注意力机制

国家自然科学基金项目云南省教育厅科学研究基金项目&&云南省中青年学术和技术带头人后备人才项目

620650012023Y10442023Y1043202205AC160001

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(4)