首页|基于MacBERT的方面级中文教学评论无监督情感分析框架

基于MacBERT的方面级中文教学评论无监督情感分析框架

扫码查看
针对中文教学评论的情感分析,提出了基于预训练语言模型MacBERT的方面级中文教学评论无监督情感分析框架.首先,针对每个教学方面和情感极性,通过预训练语言模型构建语义一致的类别词表;然后,利用构建的词表和词性标签,基于重合率矩阵对训练语料库中的部分评论句进行标注;最后,利用已标注的评论句构建神经网络,通过MacBERT提取测试数据中方面类别和情感类别的联合隐藏特征,并利用抗噪声损失函数完成方面抽取和情感分类.实验结果表明,该模型在方面抽取和情感分类任务上的宏观F1 值分别为78.10%和89.20%,说明该模型能够从学生反馈中准确完成方面类别抽取并确定每个评论句的情感极性.
Aspect-Level Chinese Teaching Comments Unsupervised Sentiment Analysis Framework Based on MacBERT
An aspect-level unsupervised sentiment analysis framework for Chinese teaching comments based on the pre-trained language model MacBERT is proposed for sentiment analysis.Firstly,for each teaching aspect and emotional polarity,a semantically consistent category vocabulary table is constructed through pre-trained language models.Then,part of the comment sentences in the training corpus is annotated using the constructed vocabulary and part-of-speech tags and based on an overlap rate matrix.Finally,a neural network is constructed using anno-tated comment sentences to extract joint hidden features of aspect and emotion from the test data through MacBERT,and accurate aspect extraction and emotion classification are achieved using a noise-resistant loss func-tion.The experimental results show that the macro F1 values of the model in aspect extraction and sentiment classi-fication tasks are 78.10%and 89.20%respectively,indicating that the model can accurately extract aspect catego-ries from student teaching feedback and determine the emotional polarity of each comment sentence.

aspect-level sentiment analysisdeep learningMacBERTpre-trained language modeloverlapping Matrix

顾明、王晓勇、胡胜利

展开 >

淮南联合大学 经济管理学院,安徽 淮南 232038

淮南联合大学 信息工程学院,安徽 淮南 232038

安徽理工大学 计算机科学与工程学院,安徽 淮南 232001

方面级情感分析 深度学习 MacBERT 预训练语言模型 重合率矩阵

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(5)
  • 1