首页|基于改进YOLO网络的混凝土裂缝检测方法研究

基于改进YOLO网络的混凝土裂缝检测方法研究

扫码查看
对于模型规模大、算力要求高的目标检测网络,一般很难实现移动部署,因此,在混凝土裂缝检测领域中的应用受到制约.为此,提出一种混凝土裂缝检测网络模型(YOLO-GAMM),将YOLOv5s主干网络替换为轻量型网络MobileNetV3,再引入全局注意力机制以实现YOLO-GAMM,使其复杂度和精度能够满足便携式混凝土裂缝检测系统的要求.仿真结果表明,与YOLOv5s模型相比,改进后的网络模型计算量缩小了60.0%,占用的内存约缩减了65.5%,性能良好.
Concrete Crack Detection Method Based on Improved YOLO Network
The target detection network with large models and high computing power requirements is difficult to im-plement mobile deployment,which restricts its application in the field of concrete crack detection.A concrete crack detection network model(YOLO-GAMM)is proposed,in which the backbone network of YOLOv5s is replaced by a lightweight network MobileNetV3 and a global attention mechanism is introduced to achieve YOLO-GAMM,so that its complexity and accuracy can satisfy the requirements of portable concrete crack detection systems.The sim-ulation results show that compared with the YOLOv5s model,the improved network model has a 60.0%reduction in computation and a 65.5%reduction in memory consumption and has a good performance.

YOLO networktarget detectionconcrete crackslightweight networkglobal attention mechanism

黎乐、谭银华、文玉双、赵晨溪、胡文金

展开 >

重庆科技大学 电子与电气工程学院,重庆 401331

YOLO网络 目标检测 混凝土裂缝 轻量型网络 全局注意力机制

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(5)