首页|基于VMD-SSA-LSTM的声波时差测井曲线重构方法

基于VMD-SSA-LSTM的声波时差测井曲线重构方法

扫码查看
在实际测井过程中,地质、工程等因素的影响会造成部分测井曲线数据失真甚至缺失.为解决此问题,构建了基于变分模态分解-麻雀搜索算法-长短时记忆神经网络(VMD-SSA-LSTM)的声波时差(AC)测井曲线重构方法.首先,采用鲸鱼优化算法实现VMD参数寻优,对原始数据进行分解降噪;其次,通过改进的SSA优化LSTM参数;最后,叠加各分解序列值,得到最终预测值.AC测井曲线补全和生成实验结果表明,基于VMD-SSA-LSTM预测的重构曲线具有更高的精度,且表现出较好的稳定性以及泛化能力,能够生成更加符合实际情况的测井曲线.
Method of Acoustic Time Difference Logging Curve Reconstruction Based on VMD-SSA-LSTM
In order to solve the problem that some logging data is distorted or missing due to the influence of geolog-ical,engineering and other factors in the actual logging process,a reconstruction method of acoustic time difference logging curve based on VMD-SSA-LSTM(variational mode decomposition-Sparrow search algorithm-long and short time memory neural network)is constructed.Firstly,Whale algorithm is applied to optimize VMD(variation-al mode decomposition)and the original data is decomposed and denoised.Then,the improved SSA(Sparrow search algorithm)is applied to optimize the selection of LSTM(short-duration memory neural network)parame-ters.Finally,the values of each decomposition sequence are superimposed to obtain the final values.The experi-mental results show that the combined model of VMD-SSA-LSTM has higher curve reconstruction accuracy,dem-onstrate better stability and generalization ability and can generate curves that are more in line with the actual situa-tion.

reconstruction of logging curvewhale algorithmvariational mode decompositionsparrow search algo-rithmlong and short term memory neural network

陈家鑫、赵军龙、崔文洁、孙婧、张雨辰、金利睿

展开 >

西安石油大学 地球科学与工程学院,西安 710065

西安石油大学 陕西省油气成藏地质学重点实验室,西安 710065

测井曲线重构 鲸鱼算法 变分模态分解 麻雀搜索算法 长短时记忆神经网络

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(6)