首页|一种高效的回归参数估计数值方法

一种高效的回归参数估计数值方法

扫码查看
在线性回归参数估计相关研究中,传统的梯度下降法和牛顿法常受限于局部收敛问题,对初始值和学习率的选择高度敏感.为了突破这些局限,提出了一种基于中心差商的回归参数估计(RPE-CD)算法,利用中心差商来近似损失函数的偏导数,有效减少了模型对学习率调整和初始值选择的依赖性.以儿童尿肌酐含量与年龄的线性回归模型为例进行实验研究,结果表明RPE-CD算法在计算效率和初始值敏感性方面均有显著优势,能够大幅提高收敛速度和精确度.此外,RPE-CD算法的拟合优度、均方误差与最小二乘法非常接近,表现出了卓越的鲁棒性和广泛的适用性.
An Efficient Numerical Method for Estimating Regression Parameters
In the study of linear regression parameter estimation,traditional gradient descent and Newton's method are often limited by local convergence issues and are highly sensitive to the choice of initial values and learning rates.To overcome these limitations,a regression parameter estimation algorithm based on central difference is pro-posed,which uses central differences to approximate the partial derivatives of the loss function,effectively reducing the model's dependence on learning rate adjustment and initial value selection.The experimental results of the line-ar regression model of children's urine creatinine content and age show that the algorithm has significant advantages in terms of computational efficiency and initial value sensitivity,which can greatly improve convergence speed and accuracy.The goodness of fit and mean square error of the algorithm are very close to the least squares method,demonstrating excellent robustness and wide applicability.

linear regressionparameter estimationcentral differenceNewton's method

余婉风

展开 >

安徽信息工程学院 大数据与人工智能学院,安徽 芜湖 241100

线性回归 参数估计 中心差商 牛顿法

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(6)