首页|改进YOLOv8n的齿面缺陷检测研究

改进YOLOv8n的齿面缺陷检测研究

扫码查看
对于粗加工齿轮人工质检存在的检测效率低、检测一致性差等问题,提出了一种基于改进YOLOv8n的YOLO-CHD模型.首先,在骨干网络首层卷积后增加C2f层,以减少后续卷积层对小目标特征细节信息的丢失;其次,在特征融合网络中进一步融合浅层大尺寸特征图,并配合ASFF-4H在更高分辨率的特征图上检测小目标,以提高检测精度;最后,将特征融合网络中深层特征图的C2f替换为Dual-C2f,以进一步提高模型检测精度.实验结果表明,改进模型的平均精度均值达到了73.3%,相较于原始模型提高了3.3 个百分点,推理速度达到了 42 帧/s,基本能够满足对齿面缺陷的粗加工质检需求.
Detection of Tooth Surface Defects Based on Improved YOLOv8n
In order to solve the problems of low detection efficiency and poor detection consistency in manual quality inspection of rough gears,a YOLO-CHD algorithm model based on improved YOLOv8n is proposed.Firstly,the C2f layer is added after the initial convolution of the backbone network to reduce the loss of small target feature de-tails by the subsequent convolutional layer.Secondly,the shallow large-size feature map is further fused in the fea-ture fusion network,and the small target is detected on the higher-resolution feature map with ASFF-4H to im-prove the detection accuracy.Finally,the C2f of the deep feature map in the feature fusion network is replaced by Dual-C2f to further improve the detection accuracy of the model.The experimental results show that the average accuracy of the improved model reaches 73.3%,which is 3.3 percentage points higher than that of the original model,and the inference speed is 42 frames/s,which basically meets the needs of rough machining quality inspec-tion in the tooth surface defect process.

defect detectionroughing gearsfeature enhancementfeature fusionYOLOv8n algorithm

马彬洋、彭龑

展开 >

四川轻化工大学 计算机科学与工程学院,四川 自贡 643000

缺陷检测 粗加工齿轮 特征增强 特征融合 YOLOv8n算法

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(6)