首页|基于水下无线传感器网络的深度神经网络模型定位研究

基于水下无线传感器网络的深度神经网络模型定位研究

扫码查看
水下介质定位系统主要依靠锚节点对水下信道或目标进行模拟,对部署于水下的无线传感器性能要求较高.为进一步优化水下介质定位系统,建立了基于水下无线传感器网络的深度神经网络模型,分析影响定位精度的各项重要因素和指标,如信道变异性、接收机噪声水平、神经网络神经元数目,以及接收到的声信号功率利用率与协方差等.研究结果表明,当信道变异性较小时,最能体现深度神经网络的有效性.
Localization of Deep Neural Network Model Based on Underwater Wireless Sensor Network
The underwater medium localization systems mainly relies on anchor nodes to simulate underwater passa-ges or targets,and has high performance requirements for wireless sensors deployed underwater.To further optimize the underwater medium localization system,deep neural networks are applied to underwater wireless sensors,and factors and indicators affecting localization accuracy are analyzed,such as channel variability,receiver noise level,number of neural network neurons,and received acoustic signal power utilization and covariance.Research has shown that the effectiveness of deep neural networks is best demonstrated when channel variability is low.

underwater wireless sensordeep neural networksvariabilityneuronspower utilizationcovariancelocalization

李泽山

展开 >

国家林业和草原局信息中心,北京 100714

水下无线传感器 深度神经网络 变异性 神经元 功率利用率 协方差 自由定位

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(6)