首页|基于Apriori算法和贝叶斯网络的高处坠落事故致因分析

基于Apriori算法和贝叶斯网络的高处坠落事故致因分析

扫码查看
为减少建筑施工中的高处坠落事故隐患,基于关联规则算法和贝叶斯网络进行事故致因分析.首先,收集整理2018-2022 年共131 份建筑施工高处坠落事故报告作为统计样本,从中提取导致事故发生的24 个因素.其次,采用Apriori算法挖掘各因素之间的强关联规则,再结合专家经验构建高处坠落事故贝叶斯网络模型.然后,根据统计频率数据分析结果确定其中高频风险因素,同时借助Genie软件对该贝叶斯网络进行逆向推理和敏感性分析,进而识别出事故发生的关键路径和高敏感性因素.
Analysis of Falling Accident Causes Based on Apriori Algorithm and Bayesian Network
The accident cause analysis based on association rule algorithm and Bayesian network is carried out to address the falling accident hazards in building construction.Firstly,131 reports of falling accidents in building construction from the year 2018-2022 are statistically analyzed,from which 24 factors leading to accidents were ex-tracted.Secondly,Apriori algorithm is used to explore the strong association rules among these factors to suggest their intrinsic connections,and a Bayesian network model of falling accidents is constructed by combining expert experience.Then,the high-frequency factors are identified based on the statistical frequency analysis data,while the critical paths and high sensitivity factors of accidents are identified with the help of Genie software for backward inference and sensitivity analysis of this Bayesian network.

Apriori algorithmBayesian networkaccident causesfalling accidents

田晓敏、李晓冬

展开 >

青岛理工大学 管理工程学院/城乡建设信用与风险管理研究中心,山东 青岛 266520

Apriori算法 贝叶斯网络 事故致因 高处坠落事故

2024

重庆科技学院学报(自然科学版)
重庆科技学院

重庆科技学院学报(自然科学版)

影响因子:0.329
ISSN:1673-1980
年,卷(期):2024.26(6)