首页|精密测距系统距离预测方法改进与应用

精密测距系统距离预测方法改进与应用

扫码查看
在精密测距系统(distance measuring equipment/precision,DME/P)测距记忆环节中,为提高预测精度,分别用AR(p)模型和卡尔曼滤波代替传统的动态记忆方法来预测记忆时间内的飞机距离值.为增加运算的实时性,对卡尔曼滤波用分段循环卡尔曼滤波的原理进行化简.仿真结果表明:2种方法均能准确地预测出距离值,其中卡尔曼滤波有比较好的实时性.
Improvement and application of distance-prediction method in the DME/P system
In the memory-stage of the distance measuring equipment/precision(DME/P) system, to improve the forecastprecision, the Kalman filter and AR(p)model were substituted for the method of dymanic memory which is a traditional way to predict the distance value between the aircraft and the DME/P system respectively. In addition, to increase the real-time computing, sub-cycle Kalman filter was used to predigest the Kalman filter. The simulation results indicate that the two methods can predict the distance value accurately and the Kalman filter has better real-time.

DME/PAR(p) modlekalman filtersub-cycle kalman filter

王伟卿、李晓明

展开 >

空军工程大学,电讯工程学院,陕西,西安,710077

精密测距系统 AR(p)模型 卡尔曼滤波 分段循环卡尔曼滤波

2011

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2011.23(1)
  • 1
  • 4