首页|MFE-YOLOX:无人机航拍下密集小目标检测算法

MFE-YOLOX:无人机航拍下密集小目标检测算法

扫码查看
针对无人机航拍时物体尺度变化大,检测目标大多较小且物体较密集的问题,提出一种混合特征增强结构(mix feature enhancement,MFE)方法.通过在超分辨率方法中加入注意力机制以增强小目标信息提取,利用一种新的特征层融合计算方法,加强不同特征层间的融合效率,提高了中小型目标的检测精度;设计了尾端感受野扩大层以扩大尾端特征层感受野,使检测头可接收丰富的物体信息来定位并区分密集物体.实验在数据集Vis-Drone2021的测试集上进行测试,MFE-YOLOX网络的AP50结果为47.78%,在参数量、计算量与原网络相近的情况下精度提高了 9.43个百分点.
MFE-YOLOX:Dense small target detection algorithm under UAV aerial photography
A mixed feature enhancement(MFE)method is proposed for the problem that the object scale varies greatly during UAV aerial photography,and most of the detection targets are small and dense objects.First,an attention mecha-nism is added to the super-resolution method to enhance small target information extraction;then,a new fusion calculation method of feature layers is proposed to enhance the fusion efficiency between different feature layers and improve the detec-tion accuracy of small and medium-sized targets.Finally,a tail-end perceptual field expansion layer is designed to expand the tail-end feature layer perceptual field so that the detection head can receive rich object information to locate and distin-guish dense objects.The experiments are tested on the test set of dataset VisDrone2021,and the results show that the AP50 result using the MFE-YOLOX network is 47.78%,and the accuracy is improved by 9.43%with similar number of parame-ters and computational load compared to the original network.

small object detectionunmanned aerial vehicleattention mechanismfeature fusionYOLOX

马俊燕、常亚楠

展开 >

广西大学机械工程学院,南宁 530004

广西大学广西制造系统与先进制造重点实验室,南宁 530004

小目标检测 无人机 注意力机制 特征融合 YOLOX

国家自然科学基金项目广西自然科学基金重点项目

521650622020JJD160004

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(1)
  • 27