重庆邮电大学学报(自然科学版)2024,Vol.36Issue(1) :136-144.DOI:10.3979/j.issn.1673-825X.202211300347

基于协同卷积的轻量级行为检测方法

Lightweight action detection method based on collective convolution

陈欣悦 高陈强 陈旭 黄思翔
重庆邮电大学学报(自然科学版)2024,Vol.36Issue(1) :136-144.DOI:10.3979/j.issn.1673-825X.202211300347

基于协同卷积的轻量级行为检测方法

Lightweight action detection method based on collective convolution

陈欣悦 1高陈强 1陈旭 1黄思翔1
扫码查看

作者信息

  • 1. 重庆邮电大学通信与信息工程学院,重庆 400065;信号与信息处理重庆市重点实验室,重庆 400065
  • 折叠

摘要

时空行为检测是计算机视觉领域重要的研究方向,为了减小模型体量,提高检测速度,提出一种基于协同卷积(collective convolution,CoConv)的轻量级行为检测方法.将视频的时序信息转换为时空图像(spatio-temporal image,STI),利用协同卷积获取相同位置不同时间的时空特征信息.在YOLOv5的基础上将骨干网络和检测头部替换为协同卷积模块构建时空行为检测网络结构,通过后处理对时空图像的检测结果进行连接,快速形成视频结果,提高网络的行为检测性能.实验结果表明,提出的方法可以在保证准确率和不增加参数量的情况下,减少网络计算量,提高网络检测速度,且优于现有的行为检测方法.

Abstract

Spatio-temporal behavior detection is an important research direction in the field of computer vision.To reduce the size of models and improve the detection speed,we propose a lightweight action detection method based on collective convolution(CoConv).The temporal information of the video is converted into spatio-temporal image(STI),and the spa-tio-temporal feature information of the same position at different times is obtained by Collective Convolution.Based on YOLOv5,the backbone network and detection head are replaced by collective convolution modules to construct the spatio-temporal action detection network structure.Detection results of spatio-temporal images are connected through post-process-ing to quickly form video results and improve the performance of network action detection.Experimental results demonstrate that our method can reduce network computational complexity,enhance detection speed,and outperform existing behavior detection methods while maintaining accuracy and not increasing the number of parameters.

关键词

深度学习/时空行为检测/轻量级/协同卷积/时空图像

Key words

deep learning/spatiotemporal action detection/lightweight/collective convolution/spatio-temporal image

引用本文复制引用

基金项目

国家自然科学基金(62176035)

重庆市教委科学技术研究项目(KJZD-K202100606)

出版年

2024
重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
参考文献量35
段落导航相关论文