首页|结合双向LSTM和注意力机制的车辆轨迹预测

结合双向LSTM和注意力机制的车辆轨迹预测

扫码查看
为提升智能交通、自动驾驶等系统的管理和服务质量,提出一种双向长短期记忆网络结合注意力机制的车辆轨迹预测模型.采用道格拉斯-普克压缩算法对轨迹数据进行压缩预处理,减少数据中的冗余;在编码器中使用双向长短期记忆网络充分捕获时间相关性特征,并采用自注意力机制获得与邻近车辆之间的全局空间相关性特征;通过解码器的全连接层获取车辆的未来位置,并通过模型迭代获得完整的预测轨迹路线.实验结果表明,提出的模型预测性能优于对比模型.此外,消融实验结果表明,引入轨迹压缩算法与改进的长短期记忆网络结合注意力机制对预测准确度均有积极贡献.
Vehicle trajectory prediction combining bidirectional LSTM and attention mechanism
To improve management and service quality in intelligent transportation,autonomous driving and other systems,we propose a bidirectional long short-term memory network combined with self-attention model for vehicle trajectory predic-tion.Our approach adopts Douglas-Pook compression algorithm to compress and pre-process trajectory data,reducing data redundancy and optimizing data processing.The encoder uses a bidirectional long and short-term memory network to fully capture temporal correlation features,while the self-attention mechanism extracts global spatial correlation features from sur-rounding vehicles.The future position of the vehicle is obtained through the fully connected layer of the decoder,and the complete predicted trajectory route is obtained through model iteration.Experimental results show that the prediction per-formance of the proposed model is better than that of the comparison model.In addition,the results of ablation experiments show that the introduction of the trajectory compression algorithm and the improved long short-term memory network com-bined with the attention mechanism have a positive contribution to prediction accuracy.

vehicle trajectorytrajectory predictionattention mechanismintelligent transportation

夏英、熊长江

展开 >

重庆邮电大学 计算机科学与技术学院,重庆 400065

车辆轨迹 轨迹预测 注意力机制 智能交通

国家自然科学基金项目重庆市教委重点合作项目

41971365HZ2021008

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(2)
  • 19