首页|融合FEB的YOLOX遥感图像目标检测算法

融合FEB的YOLOX遥感图像目标检测算法

扫码查看
针对遥感图像的复杂背景干扰大、目标尺度变化大以及小目标检测困难等导致检测精度降低的问题,提出一种增强YOLOX主干网络输出特征提取能力的检测算法.通过加入连续膨胀残差卷积和注意力机制,设计一种全新的提取主干网络输出特征增强块(feature enhance block,FEB),让连续膨胀残差卷积串联 4 个具有不同膨胀率的膨胀残差卷积,扩大算法的感受野,丰富上下文信息,同时减轻背景对检测的影响,有效加强算法对目标尺度变化大及小目标的检测能力,使用SA注意力机制抑制背景对算法检测的干扰,提高算法的检测精度.在RSOD数据集上的实验表明,FEB相较于其他同类型模块具有更好的特征提取能力.
YOLOX remote sensing image object detection algorithm based on FEB
In view of the problems of reduced detection accuracy caused by complex background interference,large target scale variation,and difficulty in detecting small targets in remote sensing images,a detection algorithm is proposed to en-hance the feature extraction ability of YOLOX backbone network.By adding continuous void residual convolution and atten-tion mechanism,we design a new feature enhance block(FEB)to extract the output features of the backbone network,which allows continuous expansion residual convolution to be concatenated with 4 different expansion rates of expansion re-sidual convolution,expanding the receptive field of the algorithm,enriching contextual information,while reducing the in-fluence of background on detection.It effectively enhances the algorithm's ability to detect large target scale variations and small targets.The SA attention mechanism is used to suppress the interference of background on algorithm detection and im-prove the detection accuracy of the algorithm.Experiments on the RSOD dataset show that FEB has better feature extraction ability compared to other similar modules.

machine visionremote sensing imagesobject detectionYOLOX

余翔、庞志濠

展开 >

重庆邮电大学 通信与信息工程学院,重庆 400065

机器视觉 遥感图像 目标检测 YOLOX

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(2)
  • 12