首页|基于域矩阵因子分解机的点击通过率预估增强网络

基于域矩阵因子分解机的点击通过率预估增强网络

扫码查看
有效的特征交互,对于工业推荐系统中点击通过率(click-through-rate,CTR)预估的准确性起着至关重要的作用.以往并行结构的CTR预估模型通过将独立的浅层模型和深层模型并行连接,以此来学习特征的低阶交互和高阶交互.但是,这些模型存在浅层模型准确性低、未考虑特征交互时的多语义问题、参数过多、深层模型过度泛化等问题.基于上述问题,提出了一种基于域矩阵因子分解机的点击通过率预估增强网络,通过引入域矩阵优化浅层模型中的交互,提高运算效率,并在深层模型的DNN层与层之间增加了桥接模块,在每层高阶交互后增强对原始特征的记忆能力,将浅层模型和深层模型的结果相加并归一化得到预测值.该模型在Criteo、KKBox、Frappe和MovieLens数据集上进行了大量实验,展现了优秀的预测能力.
Enhanced network for CTR prediction based on field-matrixed factorization machines
Effective feature interaction plays a vital role in the accuracy of click-through-rate(CTR)estimation in industri-al recommendation systems.Previous CTR prediction models with a parallel structure learn low-order and high-order interac-tions of features by connecting independent shallow models and deep models in parallel.However,these models have prob-lems such as low accuracy of shallow models,failure to consider the multi-semantic problem of feature interaction,exces-sive parameters,and over-generalization of deep models.Based on the above problems,this paper proposes an enhanced network for CTR prediction based on field-matrixed factorization machines.It introduces domain matrix to optimize the inter-action in shallow models,improves the efficiency of computation,and adds a bridge module between the DNN layers of deep models to enhance the memory ability of original features after each high-order interaction.The results of shallow and deep models are added and normalized to obtain the predicted value.The model has undergone extensive experiments on Criteo,KKBox,Frappe,and MovieLens datasets,demonstrating excellent predictive capabilities.

click-through ratefield-matrixed factorization machinebridging modulefeature interaction

陈乔松、黄泽锰、胡静、王进、邓欣

展开 >

重庆邮电大学 计算机科学与技术学院,重庆 400065

重庆邮电大学 数据工程与可视计算重点实验室,重庆 400065

点击通过率 域矩阵因子分解机 桥接模块 特征交互

国家重点研发项目

2022YFE0101000

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(2)
  • 26