重庆邮电大学学报(自然科学版)2024,Vol.36Issue(3) :503-512.DOI:10.3979/j.issn.1673-825X.202303040061

对比增强的关联记忆网络用于医学图像报告生成

Contrast-enhanced relational memory network for medical image report generation

王志强 曾宪华
重庆邮电大学学报(自然科学版)2024,Vol.36Issue(3) :503-512.DOI:10.3979/j.issn.1673-825X.202303040061

对比增强的关联记忆网络用于医学图像报告生成

Contrast-enhanced relational memory network for medical image report generation

王志强 1曾宪华1
扫码查看

作者信息

  • 1. 重庆邮电大学 计算机科学与技术学院,重庆 400065;图像认知重庆市重点实验室,重庆 400065
  • 折叠

摘要

在现有的医学影像诊断报告自动生成模型中,仅利用输入图像的视觉特征来提取相应的语义特征,并且生成词之间关联较弱和缺乏上下文信息等问题.为了解决上述问题,提出一种对比增强的关联记忆网络模型,通过对比学习提高模型区分不同图像的能力,设计了注意力增强关联记忆模块根据上一时间步生成的单词来持续更新,以加强生成医学图像报告中生成词之间的关联性,使得本模型可以为医学图像生成更准确的病理信息描述.在公开IU X-Ray数据集和私有胎儿心脏超声数据集上的实验结果表明,提出的模型在Cider评估指标方面明显优于以前的一些模型(与经典的AOANet模型相比较,在IU X-Ray上Cider指标提升了51.9%,在胎儿心脏超声数据集上Cider指标提升了3.0%).

Abstract

In existing models for automatic medical image diagnosis report generation,only visual features of the input ima-ges are used to extract the corresponding semantic features,and there exist the weak correlations and the lack of contextual information between generated words.To address the above problems,a contrast-enhanced relational memory network model is proposed to improve the model's ability to distinguish different images through contrastive learning.An attention-en-hanced associative memory module is designed to continuously update based on the words generated at the previous time step to enhance the correlation between generated words in medical image reports,making the model capable of generating more accurate pathological information descriptions for medical images.Experimental results on the public IU X-Ray dataset and private Fetal Ultrasound dataset show that the proposed model significantly outperforms previous models in terms of Ci-der evaluation metric(compared with the classical AOANet model,the Cider metric is increased by 51.9% on IU X-Ray and 3.0% on the Fetal Ultrasound dataset).

关键词

医学图像报告生成/关联记忆网络/双层LSTM/上下文信息/对比学习

Key words

medical image report generation/associative memory network/double LSTM/contextual information/contras-tive learning

引用本文复制引用

基金项目

国家自然科学基金(62076044)

重庆市英才计划(cstc2022ycjhbgzxm0160)

出版年

2024
重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
段落导航相关论文