重庆邮电大学学报(自然科学版)2024,Vol.36Issue(3) :609-618.DOI:10.3979/j.issn.1673-825X.202305170144

融合深度神经网络和方面感知的可解释推荐方法

Fusing deep neural networks and aspect-aware for explainable recommendation method

唐宏 张静 刘斌 金哲正
重庆邮电大学学报(自然科学版)2024,Vol.36Issue(3) :609-618.DOI:10.3979/j.issn.1673-825X.202305170144

融合深度神经网络和方面感知的可解释推荐方法

Fusing deep neural networks and aspect-aware for explainable recommendation method

唐宏 1张静 1刘斌 1金哲正1
扫码查看

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆 400065;重庆邮电大学 移动通信技术重庆市重点实验室,重庆 400065
  • 折叠

摘要

为提升推荐结果的准确性和可解释性,提出一种融合深度神经网络和方面感知的可解释推荐方法.针对评分数据的稀疏性问题,综合考虑显式和隐式评分数据,通过深度神经网络的矩阵分解模型学习用户和物品的潜在特征;通过无监督的方面提取模块来学习用户和物品的方面特征;将潜在特征和方面特征统一到预测层进行评分预测;针对生成解释质量低且缺乏个性化的问题,在评分预测的基础上,采用提取的主题词和预定义的神经模板相结合生成推荐理由,提高解释的生成质量.实验表明,提出的方法不仅能准确预测用户对物品的评分,还能够生成具有解释性的推荐理由,且生成的解释质量优于对比方法.

Abstract

To improve the accuracy and interpretability of recommendations,a method of interpretability recommendation fusing deep neural network and aspect-aware is proposed.First,for the sparsity problem of rating data,the explicit and im-plicit rating data are comprehensively considered,and the latent features of users and items are learned through the matrix decomposition of deep neural networks.Second,the aspect features of users and items are learned through the unsupervised aspect extraction module.Then,the latent features and aspect features are integrated into the prediction layer for rating pre-diction.Finally,for the problems of low explanation quality and lack of personalization,based on the rating prediction,the extracted topic and predefined neural templates are combined to generate recommendation reason to improve the generation quality of explanations.Experimental results on Amazon data sets show that the proposed model can not only accurately pre-dict user ratings of items,but also generate explanatory reasons for recommendations.In comparison,the explanation quali-ty generated by this method is somewhat better than that of the contrastive methods.

关键词

推荐系统/可解释推荐/深度神经网络/评分预测/理由生成

Key words

recommendation system/explainable recommendation/deep neural network/rating prediction/reason generation

引用本文复制引用

基金项目

国家自然科学基金(61971080)

出版年

2024
重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
段落导航相关论文