首页|基于CNN-GRU的移动APP流行度预测模型

基于CNN-GRU的移动APP流行度预测模型

扫码查看
移动APP流行度预测对应用推荐、广告投放等意义重大.但是现有方法大多依赖手工特征工程,工作量大且效率较低.为此,提出一种基于深度神经网络的移动APP流行度预测模型.利用最大信息系数进行特征相关性分析以确保特征选取有效性,结合历史流行度特征,通过门控循环单元(gate recurrent unit,GRU)和注意力机制构建长期演化模型来推演发展趋势,基于多尺度卷积神经网络(convolutional neural networks,CNN)和注意力机制构建短期波动模型以实现预测动态优化,结合其他重要特征利用GRU和注意力机制建立多因素影响模型.通过时间注意力模块将上述模型融合,实现流行度预测.实验结果表明,所提模型在移动APP流行度预测方面相对更为精准有效.
Mobile APP popularity prediction model based on CNN-GRU
Mobile app popularity prediction is crucial for app recommendation and advertising.However,existing methods rely heavily on manual feature engineering,which is labor-intensive and inefficient.This paper proposes a deep neural net-work model for mobile app popularity prediction.First,the maximal information coefficient is utilized to perform feature cor-relation analysis,ensuring the effectiveness of feature selection.Combined with historical popularity features,a long-term e-volution model is constructed through a gate recurrent unit(GRU)and an attention mechanism to deduce the development trend.A short-term fluctuation model is constructed based on multi-scale convolutional neural networks(CNN)and an at-tention mechanism to achieve dynamic optimization of prediction.Also,other important features are incorporated to build multi-factor influence models using GRU and attention.Finally,the above models are integrated through a temporal atten-tion module to achieve popularity prediction.Experimental results demonstrate the relative accuracy and effectiveness of the proposed model in predicting the popularity of mobile apps.

mobile apppopularity predictionattention mechanismconvolutional neural networks(CNN)gate recurrent unit(GRU)

宋育苗、于金霞

展开 >

河南理工大学 计算机科学与技术学院,河南 焦作 454000

移动APP 流行度预测 注意力机制 卷积神经网络(CNN) 门控循环单元(GRU)

河南省高校科技创新团队支持计划

20IRTSTHN013

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(4)