首页|融合时间感知和多兴趣提取网络的序列推荐

融合时间感知和多兴趣提取网络的序列推荐

扫码查看
针对序列推荐任务中的时间动态性和多重兴趣建模问题,提出一种时间感知的项目嵌入方法,用于学习项目之间的时间关联性.在此基础上,提出一种融合时间感知和多兴趣提取网络的序列推荐(time-aware multi-inter-est sequence recommendation,TMISA)方法.TMISA采用自注意力序列推荐模型作为局部特征学习模块,以捕捉用户行为序列中的动态偏好;通过多兴趣提取网络对用户的全局偏好进行建模;引入门控聚合模块将局部和全局特征表示动态融合,生成最终的用户偏好表示.实验证明,在 5 个真实推荐数据集上,TMISA模型表现出卓越性能,超越了多个先进的基线模型.
Fusing time-aware and multi-interest extraction network for sequential recommendation
To address the challenges of temporal dynamics and multi-interest modeling in sequence recommendation tasks,this paper proposes a time-aware item embedding method to learn the temporal correlations among items.Building upon this,we introduce a sequence recommendation approach called time-aware multi-interest sequence recommendation(TMI-SA),which integrates time awareness with multi-interest extraction networks.Firstly,TMISA employs a self-attention-based sequence recommendation model as a local feature learning module to capture dynamic user preferences within behav-ior sequences.Secondly,it models global user preferences through a multi-interest extraction network.Finally,a gate aggre-gation module dynamically merges local and global feature representations to generate the ultimate user preference represen-tation.Experimental results demonstrate that the TMISA model exhibits outstanding performance across five real-world rec-ommendation datasets,surpassing multiple state-of-the-art baseline models.

sequential recommendationself-attentiontime-aware item embeddingmulti-interest extraction networkga-ted aggregation module

唐宏、金哲正、张静、刘斌

展开 >

重庆邮电大学 通信与信息工程学院,重庆 400065

重庆邮电大学 移动通信技术重庆市重点实验室,重庆 400065

序列推荐 自注意力机制 时间感知的项目嵌入 多兴趣提取网络 门控聚合模块

国家自然科学基金项目

61971080

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(4)