重庆邮电大学学报(自然科学版)2024,Vol.36Issue(5) :896-906.DOI:10.3979/j.issn.1673-825X.202311200385

基于特征分离的无人机多目标跟踪方法

UAV multiple object tracking based on feature separation

王升伟 高陈强 黄骁 李鹏程 罗祥奎
重庆邮电大学学报(自然科学版)2024,Vol.36Issue(5) :896-906.DOI:10.3979/j.issn.1673-825X.202311200385

基于特征分离的无人机多目标跟踪方法

UAV multiple object tracking based on feature separation

王升伟 1高陈强 1黄骁 2李鹏程 1罗祥奎1
扫码查看

作者信息

  • 1. 重庆邮电大学通信与信息工程学院,重庆 400065;信号与信息处理重庆市重点实验室,重庆 400065
  • 2. 中国舰船研究设计中心,武汉 430064
  • 折叠

摘要

无人机运动时往往会导致跟踪轨迹中断和外观特征混淆.提出一种基于特征分离的无人机多目标跟踪方法.针对运动轨迹中断问题,提出了 一种自适应卡尔曼滤波算法,基于图像配准算法计算连续两帧图像的仿射变换矩阵,在卡尔曼滤波的预测阶段之前及时修正状态变量,使得轨迹更新过程更加平滑.针对外观特征混淆问题,设计了 一种高效的多分类目标特征编码器,通过多尺度卷积流和通道门控机制学习每个目标的辨别性特征.加权运动代价和外观代价,利用匈牙利算法求解轨迹与检测目标的全局匹配关系.在广泛使用的无人机多目标跟踪数据集VisDrone2019-MOT上进行实验验证,结果表明,该方法在多目标跟踪准确度(multiple object tracking accuracy,MOTA)和轨迹识别F1分数(identification F1-Score,IDF1)指标上比目前最优方法UAVMOT分别提高8.1%和11.2%,验证了该方法的有效性.

Abstract

When UAV moves,it often leads to trajectory interruption and appearance feature confusion.This paper proposes a multi-object tracking method for UAV based on feature separation.An adaptive Kalman filter is proposed to address the is-sue of motion trajectory interruption.The affine matrix of two consecutive images is calculated based on the image registra-tion algorithm,and the state variables are corrected in time before the prediction stage of Kalman filter,which makes the updating process smoother.To tackle the confusion of appearance features,an efficient multi-class target feature encoder is designed,employing multi-scale convolution streams and channel gating mechanisms to learn distinctive features for each target.By weighting motion costs and appearance costs,the Hungarian algorithm is utilized to solve the global matching re-lationship between trajectories and detected targets.Experimental validation on the widely used VisDrone2019-MOT multi-target tracking dataset shows that the proposed method improves multiple object tracking accuracy(MOTA)and identifica-tion F1 score(IDF1)by 8.1%and 11.2%,respectively,compared to the current best method,UAVMOT,confirming the effectiveness of the proposed approach.

关键词

多目标跟踪/无人机/卡尔曼滤波/多尺度卷积流/特征分离

Key words

multiple object tracking/unmanned aerial vehicle/Kalman filter/multi-scale convolutional flow/feature sepa-ration

引用本文复制引用

基金项目

国家自然科学基金项目(62176035)

国家自然科学基金项目(62201111)

重庆市教委科学技术研究项目(KJZD-K202100606)

出版年

2024
重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
段落导航相关论文