首页|基于特征分离的无人机多目标跟踪方法

基于特征分离的无人机多目标跟踪方法

扫码查看
无人机运动时往往会导致跟踪轨迹中断和外观特征混淆.提出一种基于特征分离的无人机多目标跟踪方法.针对运动轨迹中断问题,提出了 一种自适应卡尔曼滤波算法,基于图像配准算法计算连续两帧图像的仿射变换矩阵,在卡尔曼滤波的预测阶段之前及时修正状态变量,使得轨迹更新过程更加平滑.针对外观特征混淆问题,设计了 一种高效的多分类目标特征编码器,通过多尺度卷积流和通道门控机制学习每个目标的辨别性特征.加权运动代价和外观代价,利用匈牙利算法求解轨迹与检测目标的全局匹配关系.在广泛使用的无人机多目标跟踪数据集VisDrone2019-MOT上进行实验验证,结果表明,该方法在多目标跟踪准确度(multiple object tracking accuracy,MOTA)和轨迹识别F1分数(identification F1-Score,IDF1)指标上比目前最优方法UAVMOT分别提高8.1%和11.2%,验证了该方法的有效性.
UAV multiple object tracking based on feature separation
When UAV moves,it often leads to trajectory interruption and appearance feature confusion.This paper proposes a multi-object tracking method for UAV based on feature separation.An adaptive Kalman filter is proposed to address the is-sue of motion trajectory interruption.The affine matrix of two consecutive images is calculated based on the image registra-tion algorithm,and the state variables are corrected in time before the prediction stage of Kalman filter,which makes the updating process smoother.To tackle the confusion of appearance features,an efficient multi-class target feature encoder is designed,employing multi-scale convolution streams and channel gating mechanisms to learn distinctive features for each target.By weighting motion costs and appearance costs,the Hungarian algorithm is utilized to solve the global matching re-lationship between trajectories and detected targets.Experimental validation on the widely used VisDrone2019-MOT multi-target tracking dataset shows that the proposed method improves multiple object tracking accuracy(MOTA)and identifica-tion F1 score(IDF1)by 8.1%and 11.2%,respectively,compared to the current best method,UAVMOT,confirming the effectiveness of the proposed approach.

multiple object trackingunmanned aerial vehicleKalman filtermulti-scale convolutional flowfeature sepa-ration

王升伟、高陈强、黄骁、李鹏程、罗祥奎

展开 >

重庆邮电大学通信与信息工程学院,重庆 400065

信号与信息处理重庆市重点实验室,重庆 400065

中国舰船研究设计中心,武汉 430064

多目标跟踪 无人机 卡尔曼滤波 多尺度卷积流 特征分离

国家自然科学基金项目国家自然科学基金项目重庆市教委科学技术研究项目

6217603562201111KJZD-K202100606

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(5)