首页|基于深度学习的表面微小缺陷检测方法综述

基于深度学习的表面微小缺陷检测方法综述

扫码查看
表面微小缺陷具有尺度小、对比度低和样本数量不足等特点,导致基于深度学习的缺陷检测精度低和漏检率高,故基于视觉的表面微小缺陷检测一直是一项具有挑战性的工作.研究发现,增强网络模型特征提取能力、减少特征丢失或梯度消失以及采用注意力机制关注图像中重要的区域有利于提高表面微小缺陷的检测精度.该文系统分析了能够有效提高表面微小缺陷检测精度的ResNet、DenseNet、FPN等网络结构,总结了注意力机制在表面微小缺陷检测中的应用,分析了生成对抗网络(generative adversarial networks,GAN)针对表面微小缺陷样本不足问题的解决方案和具体应用,全面总结了微小表面缺陷检测中有效的网络结构和解决机制.
Surface tiny defects detection based on deep learning:A review
Surface tiny defects are characterized by small scale,low contrast,and insufficient sample size,which lead to low detection accuracy and high missed detection rate based on deep learning.Therefore,visual detection of surface tiny de-fects remains a challenging task.Research indicates that enhancing the feature extraction capabilities of network models,re-ducing feature loss or gradient disappearance,and employing attention mechanisms to focus on important regions in images can significantly improve detection accuracy for surface tiny defects.This paper systematically analyzes network structures such as ResNet,DenseNet,and FPN that can effectively improve the detection accuracy of surface tiny defects,summari-zes the application of attention mechanisms in the detection of surface tiny defects,analyzes the solutions and specific appli-cations of generative adversarial networks(GAN)for the problem of insufficient samples of surface tiny defects,and com-prehensively summarizes effective network structures and solving mechanisms in the detection of surface tiny defects.

attention mechanismdefect detectionfeature extractionfeature fusiongenerative adversarial networkscom-puter vision

郑太雄、黄鑫、尹纶培、朱意霖、江明哲

展开 >

重庆邮电大学先进制造工程学院,重庆 400065

注意力机制 缺陷检测 特征提取 特征融合 生成对抗网络 计算机视觉

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(5)