首页|结合自注意力机制和软阈值降噪的对比联邦学习特征聚合算法

结合自注意力机制和软阈值降噪的对比联邦学习特征聚合算法

扫码查看
传统人工智能(artificial intelligence,AI)技术在智慧视觉领域的应用面临着数据异构分布、数据隐私保护和噪声数据干扰等一系列技术难点.为了克服这些挑战,在联邦学习和信号降噪算法的思想上,提出了一种基于降噪和数据特征聚合的对比联邦学习算法(comparative federated learning aggregation feature algorithm with noise reduc-tion,FedCAFNR).FedCAFNR引入自注意力机制和深度残差网络,构建自适应阈值降噪网络,提高联邦学习从异构性数据中学习关键特征的能力.通过对比学习模型之间的差异,提升局部训练精度,有效增强了个体与全局模型的一致性,进一步提高了模型对非独立同分布数据的鲁棒性.采用3种多分类数据集进行仿真实验,在数据隐私保护的前提下证明了 FedCAFNR算法具有良好的收敛性和可拓展性.此外,新算法改进了学习效率,并提高了异构数据环境下联邦学习现有算法的一致性、鲁棒性.
Self-attention mechanism and noise reduction techniques combined with federated comparative learning feature aggregation algorithm
The application of traditional artificial intelligence(Al)techniques in the field of intelligent vision faces a series of technical difficulties such as data heterogeneous distribution,data privacy protection,and noisy data interference.To o-vercome these challenges,this paper proposes a comparative federated learning aggregation feature algorithm with noise re-duction(FedCAFNR),based on the ideas of federated learning and signal noise reduction algorithms.This paper adopts a self-attentive mechanism and a deep residual network to build an adaptive threshold noise reduction network,thus improving the ability of federated learning to learn key features from heterogeneous data.This paper explores the differences between comparing different learning models and optimizes local training to further improve the consistency of the models.The pro-posed algorithm is evaluated on three multi-classification datasets and simulation experiments demonstrate that FedCAFNR has good convergence and scalability while ensuring data privacy.In addition,the new algorithm improves the learning effi-ciency and increases the consistency and robustness of existing algorithms for federal learning in heterogeneous data environ-ments.

federated learningnoise reductionself-attention mechanismfeature aggregation

王毅、瞿治国、孙乐

展开 >

南京信息工程大学计算机学院,南京 210044

联邦学习 降噪 自注意力机制 特征聚合

国家自然科学基金面上项目国家自然科学基金面上项目网络与交换技术国家重点实验室开放基金(北京邮电大学)PAPD and CI-CAEET

6137313162071240SKLNST-2020-1-17

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(5)