首页|改进TCN结合Bi-GRU的人体动作识别方法

改进TCN结合Bi-GRU的人体动作识别方法

扫码查看
针对传统人体动作识别方法特征提取不完善和泛化性能不足导致识别精度不高的问题,提出一种基于深度学习的动作识别模型.改进了传统时域卷积网络(TCN),逐层指数级缩减空洞率,优化了时域卷积的残差结构,实现在浅层网络中提取到长时间间隔数据之间的时域特征和规范网络输出.重构结构进一步结合双向门控循环单元网络(Bi-GRU),提取数据局部特征输入到全连接层整合特征并进行Softmax分类.实验表明,提出的模型在自建数据集和公开数据集UCI-HAR上保持较低参数量的同时,准确率分别达到99.61%和94.16%,具备可靠的识别性能.
Human activity recognition method combining improved TCN with Bi-GRU
Aiming at the problem of low recognition accuracy caused by incomplete feature extraction and insufficient gener-alization performance of traditional human action recognition methods,we propose an action recognition model based on deep learning methods.It improves the traditional temporal convolutional network(TCN),exponentially reduces the dila-tion rate layer by layer,and optimizes the residual structure of TCN,so as to extract the time between long-term interval da-ta in the shallow network and standardize network output.The reconstructed structure is further combined with the bidirec-tional gated recurrent unit(Bi-GRU)to extract local features of the data,and finally input to the fully connected layer to integrate the features and perform Softmax classification.Experiments show that the proposed model maintains a low number of parameters on the self-built dataset and the public dataset UCI-HAR,and the accuracy reaches 99.61%and 94.16%re-spectively,demonstrating reliable recognition performance.

human activity recognitioninertial sensortemporal convolutional networkbidirectional gated recurrent unit

路永乐、罗毅、肖轩、粟萍、李娜、修蔚然

展开 >

重庆邮电大学光电工程学院,重庆 400065

智能传感技术与微系统重庆市高校工程研究中心,重庆 400065

西南技术工程研究所,重庆 400039

人体动作识别 惯性传感器 时域卷积网络 双向门控循环单元

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(5)