重庆邮电大学学报(自然科学版)2024,Vol.36Issue(5) :1015-1022.DOI:10.3979/j.issn.1673-825X.202311090359

改进TCN结合Bi-GRU的人体动作识别方法

Human activity recognition method combining improved TCN with Bi-GRU

路永乐 罗毅 肖轩 粟萍 李娜 修蔚然
重庆邮电大学学报(自然科学版)2024,Vol.36Issue(5) :1015-1022.DOI:10.3979/j.issn.1673-825X.202311090359

改进TCN结合Bi-GRU的人体动作识别方法

Human activity recognition method combining improved TCN with Bi-GRU

路永乐 1罗毅 1肖轩 1粟萍 1李娜 2修蔚然1
扫码查看

作者信息

  • 1. 重庆邮电大学光电工程学院,重庆 400065;智能传感技术与微系统重庆市高校工程研究中心,重庆 400065
  • 2. 西南技术工程研究所,重庆 400039
  • 折叠

摘要

针对传统人体动作识别方法特征提取不完善和泛化性能不足导致识别精度不高的问题,提出一种基于深度学习的动作识别模型.改进了传统时域卷积网络(TCN),逐层指数级缩减空洞率,优化了时域卷积的残差结构,实现在浅层网络中提取到长时间间隔数据之间的时域特征和规范网络输出.重构结构进一步结合双向门控循环单元网络(Bi-GRU),提取数据局部特征输入到全连接层整合特征并进行Softmax分类.实验表明,提出的模型在自建数据集和公开数据集UCI-HAR上保持较低参数量的同时,准确率分别达到99.61%和94.16%,具备可靠的识别性能.

Abstract

Aiming at the problem of low recognition accuracy caused by incomplete feature extraction and insufficient gener-alization performance of traditional human action recognition methods,we propose an action recognition model based on deep learning methods.It improves the traditional temporal convolutional network(TCN),exponentially reduces the dila-tion rate layer by layer,and optimizes the residual structure of TCN,so as to extract the time between long-term interval da-ta in the shallow network and standardize network output.The reconstructed structure is further combined with the bidirec-tional gated recurrent unit(Bi-GRU)to extract local features of the data,and finally input to the fully connected layer to integrate the features and perform Softmax classification.Experiments show that the proposed model maintains a low number of parameters on the self-built dataset and the public dataset UCI-HAR,and the accuracy reaches 99.61%and 94.16%re-spectively,demonstrating reliable recognition performance.

关键词

人体动作识别/惯性传感器/时域卷积网络/双向门控循环单元

Key words

human activity recognition/inertial sensor/temporal convolutional network/bidirectional gated recurrent unit

引用本文复制引用

出版年

2024
重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
段落导航相关论文