重庆邮电大学学报(自然科学版)2024,Vol.36Issue(6) :1099-1109.DOI:10.3979/j.issn.1673-825X.202408280227

基于机器学习的城市环境跨频段跨场景路径损耗预测方法

Cross-frequency band and cross-scenario path loss prediction method in urban environments based on machine learning

廖希 周萍 周思洋 陈心睿 王洋 何占林
重庆邮电大学学报(自然科学版)2024,Vol.36Issue(6) :1099-1109.DOI:10.3979/j.issn.1673-825X.202408280227

基于机器学习的城市环境跨频段跨场景路径损耗预测方法

Cross-frequency band and cross-scenario path loss prediction method in urban environments based on machine learning

廖希 1周萍 1周思洋 2陈心睿 1王洋 1何占林3
扫码查看

作者信息

  • 1. 重庆邮电大学 通信与信息工程学院,重庆 400065
  • 2. 军事科学院 系统工程研究院,北京 100141
  • 3. 中国电子科技集团公司 第五十四研究所,石家庄 050081
  • 折叠

摘要

为解决传统路径损耗模型未考虑环境信息、跨场景跨频段预测性能不佳等问题,提出了环境特征驱动的跨频段跨场景路径损耗预测方法.结合二维线性和矩形环境特征描述传播环境,在随机森林路径损耗预测模型基础上引入迁移学习,实现跨频段跨场景预测;搭建了两个城市场景,场景 1 频段为 140、220、280 和 300 GHz,场景 2 频段为140 GHz;使用140 和220 GHz数据集预测280 和300 GHz路径损耗,并用场景1 数据集预测场景2 路径损耗.结果表明,与未经迁移学习调优的预测方法相比,所提方法实现 280 和 300 GHz跨频段预测的均方根误差分别下降了 3.331 1 和4.321 5 dB,跨场景预测的均方根误差下降了 0.724 4 dB.

Abstract

To address the limitations of traditional path loss models,which fail to account for environmental information and perform poorly in cross-scenario and cross-band predictions,an environment-driven path loss prediction method for cross-band and cross-scenario applications is proposed.The method combines two-dimensional linear and rectangular environmen-tal features to describe the propagation environment and incorporates transfer learning into a random forest-based path loss prediction model.Two urban scenarios were constructed:Scenario 1 includes frequency bands of 140,220,280,and 300 GHz,while Scenario 2 focuses on the 140 GHz band.The method uses datasets at 140 and 220 GHz to predict path loss at 280 and 300 GHz and employs Scenario 1 data to predict Scenario 2 path loss.Results demonstrate that the proposed meth-od reduces the root mean square error(RMSE)for achieving cross-band predictions at 280 and 300 GHz by 3.331 1 and 4.321 5 dB and for cross-scenario predictions by 0.724 4 dB compared to methods without transfer learning optimization.

关键词

机器学习/亚太赫兹/路径损耗预测/随机森林/迁移学习

Key words

machine learning/sub-terahertz/path loss prediction/random forest/transfer learning

引用本文复制引用

出版年

2024
重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
段落导航相关论文