首页|基于机器学习的城市环境跨频段跨场景路径损耗预测方法

基于机器学习的城市环境跨频段跨场景路径损耗预测方法

扫码查看
为解决传统路径损耗模型未考虑环境信息、跨场景跨频段预测性能不佳等问题,提出了环境特征驱动的跨频段跨场景路径损耗预测方法.结合二维线性和矩形环境特征描述传播环境,在随机森林路径损耗预测模型基础上引入迁移学习,实现跨频段跨场景预测;搭建了两个城市场景,场景 1 频段为 140、220、280 和 300 GHz,场景 2 频段为140 GHz;使用140 和220 GHz数据集预测280 和300 GHz路径损耗,并用场景1 数据集预测场景2 路径损耗.结果表明,与未经迁移学习调优的预测方法相比,所提方法实现 280 和 300 GHz跨频段预测的均方根误差分别下降了 3.331 1 和4.321 5 dB,跨场景预测的均方根误差下降了 0.724 4 dB.
Cross-frequency band and cross-scenario path loss prediction method in urban environments based on machine learning
To address the limitations of traditional path loss models,which fail to account for environmental information and perform poorly in cross-scenario and cross-band predictions,an environment-driven path loss prediction method for cross-band and cross-scenario applications is proposed.The method combines two-dimensional linear and rectangular environmen-tal features to describe the propagation environment and incorporates transfer learning into a random forest-based path loss prediction model.Two urban scenarios were constructed:Scenario 1 includes frequency bands of 140,220,280,and 300 GHz,while Scenario 2 focuses on the 140 GHz band.The method uses datasets at 140 and 220 GHz to predict path loss at 280 and 300 GHz and employs Scenario 1 data to predict Scenario 2 path loss.Results demonstrate that the proposed meth-od reduces the root mean square error(RMSE)for achieving cross-band predictions at 280 and 300 GHz by 3.331 1 and 4.321 5 dB and for cross-scenario predictions by 0.724 4 dB compared to methods without transfer learning optimization.

machine learningsub-terahertzpath loss predictionrandom foresttransfer learning

廖希、周萍、周思洋、陈心睿、王洋、何占林

展开 >

重庆邮电大学 通信与信息工程学院,重庆 400065

军事科学院 系统工程研究院,北京 100141

中国电子科技集团公司 第五十四研究所,石家庄 050081

机器学习 亚太赫兹 路径损耗预测 随机森林 迁移学习

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(6)