首页|基于特征轨迹点的位置隐私保护方案

基于特征轨迹点的位置隐私保护方案

扫码查看
针对现有位置隐私保护方案大多对轨迹上所有位置点都进行处理,导致数据处理效率低、可用性差的问题,提出一种基于特征轨迹点的位置隐私保护方案.将优化后的最小描述长度与迪杰斯特拉(Dijkstra)算法相结合,选择代表整个轨迹的特征轨迹点,实现最优的轨迹分割,以得到相似轨迹;采用优化后的DBSCAN 密度聚类算法对相似轨迹进行处理,得到等价类;在保证隐私预算的前提下,从等价类中选择与用户真实特征轨迹点弗朗明歇距离(Fréchet distance)最小的混淆点,然后以时间序列连接这些点形成混淆轨迹.提出的方案对特征轨迹点进行保护,降低了数据的计算复杂度;通过选择与用户真实位置距离最小的混淆点,保证了数据可用性.与IFTS和TP-MALS两个方案进行对比分析表明,提出的方案既能提高数据处理效率,又能保证数据的可用性.
A location privacy protection scheme based on characteristic trajectory points
Existing location privacy protection schemes often process all points on a trajectory,resulting in low data pro-cessing efficiency and poor usability.To address these issues,we propose a location privacy protection scheme based on characteristic trajectory points.This approach combines the optimized minimum description length with Dijkstra's algorithm to select representative characteristic trajectory points,achieving optimal trajectory segmentation and generating similar traj-ectories.We employ an optimized DBSCAN density clustering algorithm to process these similar trajectories,resulting in e-quivalence classes.Under the constraint of privacy budget,we select confusion points from the equivalence classes that have the smallest Fréchet distance to the user's actual characteristic trajectory points.These points are then connected in a time series to form confusion trajectories.By protecting characteristic trajectory points,the proposed scheme reduces the compu-tational complexity of the data and ensures data usability by selecting confusion points closest to the user's actual location.Comparative analysis with the IFTS and TP-MALS schemes shows that the proposed scheme enhances data processing effi-ciency while ensuring data usability.

location privacyminimum description lengthtrajectory segmentationFréchet distance

敖山、黄朋阳、王辉、申自浩、刘沛骞

展开 >

河南理工大学 计算机科学与技术学院,河南 焦作 454000

河南理工大学 软件学院,河南 焦作 454000

位置隐私 最小描述长度 轨迹分割 弗朗明歇距离

2024

重庆邮电大学学报(自然科学版)
重庆邮电大学

重庆邮电大学学报(自然科学版)

CSTPCD北大核心
影响因子:0.66
ISSN:1673-825X
年,卷(期):2024.36(6)