首页|基于健康保险数据的医疗费用共病网络分析及深度学习预测

基于健康保险数据的医疗费用共病网络分析及深度学习预测

扫码查看
目的 通过分析相关医疗记录构建医疗费用共病网络,并结合疾病网络与长短期记忆神经网络构建深度学习预测模型,以提升个体医疗费用预测的准确度,同时为优化医疗政策、提升患者健康管理水平提供助力。方法 基于中国台湾健康保险研究数据库2000-2013年的医疗记录,分析9 963例患者的584万条就诊数据,构建包含104种常见疾病的医疗费用共病网络,分析网络结构并预测潜在共病,结合患者的性别、年龄、病史等信息输入构建深度学习模型个体医疗费用。结果 构建的医疗费用共病网络包含104个节点、3 390条边和6个模块,是一个节点高度相连的网络,表示疾病间医疗费用具有高度相关性。构建的深度学习预测模型较传统回归模型及未充分考虑共病信息的深度学习模型相比,显著提高了预测精度。结论 构建的模型为理解疾病共病性提供了全新的理论视角,还为精准预测医疗费用、优化医疗资源配置以及实现个性化医疗服务提供了有效工具。
Comorbidity network analysis and deep learning prediction of medical expenses based on health insurance data
Objective To construct a comorbidity network for medical expenses by analyzing the rele-vant medical records,and to construct a deep learning prediction model by combining with the disease net-works and long short-term memory neural networks in order to improve the accuracy of individual medical ex-pense prediction and provide the assistance for optimizing the medical policies and enhancing the patient health management level.Methods Based on the medical records of Taiwan,China Health Insurance Research Data-base during 2000-2013,the data of 5.84 million visits from 9 963 patients were analyzed,and a comorbidity network of medical expenses for 104 common diseases was constructed.The network structure was analyzed and the potential comorbidity was predicted,and the deep learning model of individual medical cost was con-structed by combining the input of patient's gender,age,medical history and other information.Results The constructed medical cost comorbidity network consists of 104 nodes,3 390 edges and 6 modules,and is a high-ly connected network with nodes,indicating that the medical costs possesses the high correlation between dis-eases.The constructed deep learning prediction model significantly improves the prediction accuracy compared to the traditional regression models and deep learning models that do not fully consider the comorbidity infor-mation.Conclusion The constructed model provides a new theoretical perspective for understanding the co-morbidity of diseases,as well as an effective tool for accurately predicting medical costs,optimizing medical re-source allocation and achieving the personalized medical services.

chronic disease managementhealth insurance datadisease networkdeep learningmedical expenses prediction

曹毓文、梅好、孙佳仪、胡炯宇、徐雅晴

展开 >

中国人民大学应用统计科学研究中心,北京 100872

中国人民大学统计学院,北京 100872

清华大学人文学院,北京 100084

陆军军医大学第一附属医院内分泌科,重庆 400038

上海交通大学公共卫生学院,上海 200025

展开 >

慢病管理 健康保险数据 疾病网络 深度学习 医疗费用预测

2024

重庆医学
重庆市卫生信息中心,重庆市医学会

重庆医学

CSTPCD
影响因子:1.797
ISSN:1671-8348
年,卷(期):2024.53(24)