首页|人工智能辅助机会性CT与双能X线骨密度检测在2型糖尿病和非糖尿病患者骨量评估中的比较研究

人工智能辅助机会性CT与双能X线骨密度检测在2型糖尿病和非糖尿病患者骨量评估中的比较研究

扫码查看
目的 比较人工智能(AI)辅助机会性CT与双能X线骨密度检测(DXA)在糖尿病患者骨量评估中的诊断价值。方法 采用回顾性研究方法,选取2017年1月1日至2024年5月31日在陆军军医大学第一附属医院同时接受CT检查(如腹部、胸部或脊柱)联合腰椎DXA检查、糖尿病筛查或治疗的患者共72例作为研究对象。根据患病情况,分为2型糖尿病组(n=36)和非糖尿病组(n=36)。DXA扫描范围为L1~L4的腰椎椎体;AI定量CT辅助骨密度检测系统导入CT图像,在T12~L2椎体中央标记感兴趣区域,自动测算椎体松质骨的骨密度。比较两种方式在2型糖尿病组和非糖尿病组不同性别、年龄段患者中骨质减少和骨质疏松的诊断差异。绘制受试者工作特征(ROC)曲线,评估AI定量CT辅助骨密度检测系统诊断骨质疏松的特异度和灵敏度。结果 所有受试者中两种方式对骨质疏松、骨质减少、骨量正常的检出率比较差异无统计学意义(P>0。05)。非糖尿病组、<60岁人群中,DXA对骨质疏松检出率高于AI定量CT辅助骨密度检测系统,差异有统计学意义(P<0。05)。不同性别患者中,两种方式对骨质疏松、骨质减少和骨量正常的检出率比较,差异无统计学意义(P>0。05)。以DXA检测为"金标准",AI定量CT辅助骨密度检测系统对于骨质疏松具有一定诊断价值[曲线下面积(AUC)=0。661,95%CI:0。526~0。795,P=0。026],其灵敏度为68。1%,特异度为64。0%。结论 在>60岁及2型糖尿病患者中,AI辅助机会性CT在早期发现骨折风险较高患者方面与DXA同样具有优势,且前者不会增加额外费用和多余的辐射风险。
Comparative study of AI-assisted opportunistic CT and dual-energy X-ray bone mineral density detection in bone mass assessment of type 2 diabetes and non-diabetes patients
Objective To compare the diagnostic value of artificial intelligence(AI)-assisted opportun-istic CT and dual-energy X-ray absorptiometry(DXA)in the bone mass assessment of diabetic patients.Meth-ods The retrospective study method was adopted.A total of 72 patients receiving CT examination(such as abdomen,chest or spine)combined with lumbar vertebra DXA examination,diabetes screening or treatment in the First Affiliated Hospital of Army Military Medical University from January 1,2017 to May 31,2024 were selected as the study subjects and divided into the type 2 diabetic group(n=36)and non-diabetic group(n=36)according to the illness.The DXA scanning range was L1-L4 lumbar vertebral body;the AI quantitative CT-assisted bone density detection system imported the CT images,the interested region in the center of the T12-L2 vertebral body was labeled,and the bone density of cancellous bone in the vertebral body was auto-matically calculated.The diagnostic differences in osteopenia and osteoporosis were compared between the two modalities in the patients of different genders and ages in type 2 diabetes group and non-diabetes group.The receiver operating characteristic(ROC)curve was drawn to evaluate the specificity and sensitivity of the AI quantitative CT-assisted bone density detection system in the diagnosis of osteoporosis.Results There were no statistically significant differences in the detection rates of osteoporosis,osteopenia and normal bone density between the two methods(P>0.05).The osteoporosis detection rate of DXA in the non-diabetic group and population<60 years old was higher than that of the AI-quantitative CT-assisted bone mineral density detec-tion system,and the difference was statistically significant(P<0.05).In the patients with different genders,there was no statistically significant difference in osteoporosis,osteopenia and normal bone density between the two methods(P>0.05).Taking the DXA detection as the"gold standard",the AI quantitative CT-assis-ted bone mineral density detection system had a certain diagnostic value for osteoporosis[area under the curve(AUC)=0.661,95%CI:0.526-0.795,P=0.026],and its sensitivity and specificity were 68.1%and 64.0%re-spectively.Conclusion In the patients aged above 60 years old and with type 2 diabetes mellitus,the AI-assisted opportunistic CT has the same advantages as DXA in early detection of the patients at high risk of fractures,without increasing additional costs and unnecessary radiation risks.

type 2 diabetesosteoporosisartificial intelligencequantitative CTdual-energy X-ray bone mineral density test

谢雨芯、周素伊、梅好、胡炯宇

展开 >

陆军军医大学第一附属医院内分泌科,重庆 400038

陆军军医大学第一附属医院放射科,重庆 400038

中国人民大学应用统计科学研究中心,北京 100872

中国人民大学统计学院,北京 100872

展开 >

2型糖尿病 骨质疏松 人工智能 定量CT 双能X线骨密度检测

2024

重庆医学
重庆市卫生信息中心,重庆市医学会

重庆医学

CSTPCD
影响因子:1.797
ISSN:1671-8348
年,卷(期):2024.53(24)