首页|基于机器学习的消化道手术患者中心静脉导管相关性血栓风险模型的构建

基于机器学习的消化道手术患者中心静脉导管相关性血栓风险模型的构建

扫码查看
目的 探讨消化道手术患者中心静脉导管相关性血栓形成的危险因素,并基于机器学习算法构建风险预测模型。方法 选取2018年5月至2024年3月该院接受消化道手术并留置中心静脉导管的患者385例为研究对象,根据是否形成导管相关性血栓分为血栓组(n=62)和非血栓组(n=323),收集患者年龄、BMI、合并症、现患肿瘤、中性粒细胞/淋巴细胞比值(NLR)、手术时间、置管静脉、系统性免疫炎症指数(SII)、D-二聚体及导管留置时间,比较两组间基线资料的差异。将研究对象按7∶3比例随机分为训练集和测试集,基于训练集建立logistic回归模型及随机森林、支持向量机、决策树和朴素贝叶斯风险预测模型,比较不同模型在测试集中预测导管相关性血栓时受试者操作特征曲线下面积(AUC)、准确度、灵敏度、特异度及F1值,对最佳预测模型中预测因素的重要性进行可视化排序。结果 两组基线资料中现患肿瘤患者所占比例、NLR、手术时间及D-二聚体水平比较,差异有统计学意义(P<0。05)。5种风险预测模型的AUC值从大到小依次为随机森林(0。773)、logistic回归模型(0。734)、支持向量机(0。680)、朴素贝叶斯(0。666)和决策树(0。650),其中随机森林模型的准确度(0。853)、灵敏度(0。599)、特异度(0。877)和F1值(0。414)均为最高。D-二聚体、手术时间、现患肿瘤、NLR是随机森林模型中前4重要预测因素。结论 所建立消化道手术患者中心静脉导管相关性血栓的随机森林模型显示出良好性能,D-二聚体、手术时间、现患肿瘤、NLR是主要的预测因素。
Construction of risk model for central venous catheter-related thrombosis based machine learning in patients undergoing gastrointestinal tract surgery
Objective To explore the risk factors of central venous catheter related thrombosis in the patients undergoing gastrointestinal tract surgery,and to construct a risk prediction model based on machine learning algorithms.Methods A total of 385 patients receiving gastrointestinal tract surgery and central ve-nous catheter indwelling in this hospital from May 2018 to March 2024 were selected as the study subjects and divided into the thrombus group(n=62)and non-thrombus group(n=323)based on whether or not the catheter-related thrombosis forming.The age,body mass index(BMI),comorbidities,current tumors,neutro-phil/lymphocyte ratio(NLR),surgery time,catheterization vein,systemic immune inflammation index(SII),D-dimer and catheter indwelling time of the patients were collected,and the differences in baseline data were compared between the two groups.The research subjects were randomly divided into the training set and tes-ting set by a 7∶3 ratio.Based on the training set,the logistics regression model,random forest,support vector machine,decision tree and naive Bayes risk prediction models were established.The area under the operating characteristic curve(AUC),accuracy,sensitivity,specificity and F1 value in predicting catheter-related throm-bosis were compared among different models in the testing set.The importance of the predictive factors in the best prediction model conducted the visualized ranking.Results There were statistically significant differences in the proportion of tumor patients,NLR,surgical time and D-dimer level in the baseline data between the two groups(all P<0.05).The AUC values of the five risk prediction models from great to small were the random forest(0.773),logistics regression model(0.734),support vector machine(0.680),naive Bayes(0.666)and decision tree(0.650).Among them,the accuracy(0.853),sensitivity(0.599),specificity(0.877)and F1 val-ue(0.414)of the random forest model were the highest.D-dimer,surgery time,current tumor and NLR were the top four important predictive factors in the random forest model.Conclusion The constructed random forest model for central venous catheter-related thrombosis in the patients undergoing gastrointestinal tract surgery demonstrates good performance,and the D-dimer,surgery time,current tumor and NLR are the main predictive factors.

gastrointestinal tract surgerycentral venous cathetervenous thrombosis formationma-chine learningprediction model

范连娣、王宁、郭振江、刘防震、崔朝勃

展开 >

衡水市人民医院胃肠外科,河北衡水 053000

衡水市人民医院呼吸与危重症医学科,河北衡水 053000

消化道手术 中心静脉导管 静脉血栓形成 机器学习 预测模型

2024

重庆医学
重庆市卫生信息中心,重庆市医学会

重庆医学

CSTPCD
影响因子:1.797
ISSN:1671-8348
年,卷(期):2024.53(24)