首页|基于BP网络和灰色模型的春节配变重过载预测

基于BP网络和灰色模型的春节配变重过载预测

扫码查看
做好春节配电台区的负荷预测工作,对制定配电变压器重过载的应对措施,防止配电台区设备损坏,保证居民用电可靠性和安全性具有十分重要的意义。针对春节电力负荷的特殊性和规律性,采用模糊聚类法对春节假期进行时段划分,基于BP神经网络和灰色预测系统建立春节配变的日最大负荷预测模型,并结合配变的额定参数,通过预测结果判断配变是否重载或者过载。算例分析表明,该方法预测精度高,在实际应用中具备可行性。
Heavy overload forecasting of distribution transformer during the spring festival based on BP network and grey model
Load forecasting of the distribution substation during Spring Festival is significant to formulate measures for heavy load and overload of power distribution transformer,which also prevents equipment damage of the distribution substation and guarantees the reliability and safety of the residential electricity.In view of the characteristics of the electric load in Spring Festival, the fuzzy clustering method was used to divide the period of Spring Festival.Then based on BP neural network and grey prediction system,a new model for the daily maximum load forecasting of distribution transformer during Spring Festival was established.By combining the forecasting results with normal parameters of power distribution transformer,it can determine the operation condition of heavy load or overload.The case analysis results show that the proposed method is with high accuracy and feasibility in practical application.

power load in spring festivaldistribution transformerheavy load and overload fore-castingBP networkgrey model

史常凯、闫文棋、张筱慧、张波、樊勇华、唐巍

展开 >

中国电力科学研究院,北京 100192

中国农业大学 信息与电气工程学院,北京 100083

春节电力负荷 配电变压器 重过载预测 BP网络 灰色预测

国家电网公司科技项目

2016-2018

2016

电力科学与技术学报
长沙理工大学

电力科学与技术学报

CSTPCD北大核心
影响因子:0.85
ISSN:1673-9140
年,卷(期):2016.31(3)
  • 17
  • 9