首页|基于充电桩利用率的充电负荷超短期预测方法研究

基于充电桩利用率的充电负荷超短期预测方法研究

扫码查看
为消除空间分布不确定性对电动汽车充电负荷超短期预测准确性的影响,提出一种基于充电桩利用率的电动汽车充电负荷超短期预测方法.首先,从海量充电交易数据中提取形成区域内各充电桩充电负荷功率,编码后得到充电桩利用率的量化值;然后,将充电桩利用率以及充电负荷功率数据融合,得到长短期记忆神经网络的训练样本和测试集,形成电动汽车充电负荷超短期预测的深度学习模型,时间分辨率可达0.5 h;最后,在不同规模充电负荷的场景下验证了所提方法的有效性和准确性.结果表明,相比无优化的长短记忆神经网络负荷预测方法,所提方法得到的预测值平均绝对百分比误差提高了约5%,可为未来车网互动下的配电网调度优化运行提供重要支撑.
A novel ultra short-term charging load forecasting method based on usage degree of charging piles
To eliminate the impact of spatial distribution uncertainty on the accuracy of ultra-short-term forecasting of electric vehicle charging load,a method based on the utilization rate of charging piles for electric vehicle charging load ultra-short-term forecasting is proposed.Firstly,the charging load power of each charging pile within the region is extracted from massive charging transaction data,and then quantified values of the utilization rate of charging piles are obtained through encoding.Then,the utilization rate of charging piles and charging load power data are merged to obtain training samples and test sets for long short-term memory(LSTM)neural networks,forming a deep learning model for ultra-short-term forecasting of electric vehicle charging load,with a time resolution of up to 0.5 h.Finally,the effectiveness and accuracy of the proposed method are validated in scenarios with different scales of charging load.The results indicate that compared to the unoptimized LSTM neural network load forecasting method,the proposed method achieves an increase in the average absolute percentage error of approximately 5%.This can provide significant support for the optimization operation of distribution grids under future vehicle-grid interaction.

electric vehiclecharging pilecharging loadLSTMload forecasting

庞松岭、赵雨楠、唐金锐、彭勇、田金银、葛干衡

展开 >

智能电网与海岛微网联合实验室,海南 海口 570226

海南电网有限责任公司电力科学研究院,海南 海口 570226

武汉理工大学自动化学院,湖北 武汉 430070

中国电力工程顾问集团中南电力设计院有限公司,湖北 武汉 430071

展开 >

电动汽车 充电桩 充电负荷 长短期记忆神经网络 负荷预测

中国南方电网有限责任公司科技项目

073000KK52220001

2024

电力科学与技术学报
长沙理工大学

电力科学与技术学报

CSTPCD北大核心
影响因子:0.85
ISSN:1673-9140
年,卷(期):2024.39(1)
  • 35