首页|基于IHHT-RF的配电网单相接地故障选线方法

基于IHHT-RF的配电网单相接地故障选线方法

扫码查看
小电流系统发生单相接地故障时故障特征易受高接地过渡电阻、小初相角等弱故障条件影响而导致选线准确率低.为此,提出一种基于改进希尔伯特黄变换—随机森林(improved Hilbert-Huang transform-random forest,IHHT-RF)的配电网单相接地故障选线方法.首先,提取每条线路在故障发生时的电流暂态信号,通过IHHT提取纯净的暂态电气量,构造标准差、能量熵和幅值畸变度3类特征向量;然后,将特征向量输入RF分类器建立故障选线模型,把故障选线问题转化为二分类问题;最后,将测量数据输入RF分类器中得出分类结果,实现故障线路的自动识别.仿真结果表明,该选线方法综合利用暂态信号的幅值、频率和能量等特征信息,不受弱故障条件、馈线结构等因素的影响,能有效提高故障选线的准确率,具有较强的适应性和可靠性.
Single-phase-to-ground fault line selection method of distribution network based on IHHT-RF
When a single-phase-to-ground fault occurs in the small current system,its fault characteristics are easily affected by weak fault conditions such as the high grounding transition resistance and the small initial phase angle.Therefore,this paper presents a method of the single-phase-to-ground fault line selection based on an improved Hilbert-Huang transform-random forest.Firstly,the current transient signals of every lines are extracted.Then the pure transient electrical quantities are extracted by the improved Hilbert-Huang transform,and three kinds of eigenvectors such as standard deviations,energy entropy and amplitude distortion degrees are constructed.In the following,the eigenvectors are input into the random forest classifier to establish a fault line selection model,and the fault line selection problem is then transformed into a binary classification problem which realizing the automatic identification of fault lines.The simulation results show that the proposed method can effectively improve the accuracy of fault line selection by comprehensively using the amplitude,frequency and energy of transient signal;whatsmore it is not affected by weak fault condition and feeder structure,it hence has strong adaptability and reliability.

distribution networkimproved Hilbert-Huang transformationrandom forestfault line selection

李泽文、黎文娇、彭维馨、雷柳、梁流涛

展开 >

长沙理工大学电气与信息工程学院,湖南 长沙 410114

国网四川省电力公司达州供电公司,四川 达州 635000

配电网 改进希尔伯特黄变换 随机森林 故障选线

国家自然科学基金

51877012

2024

电力科学与技术学报
长沙理工大学

电力科学与技术学报

CSTPCD北大核心
影响因子:0.85
ISSN:1673-9140
年,卷(期):2024.39(1)
  • 27