首页|基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法

基于MTF可视化和改进DenseNet神经网络的电能质量扰动识别算法

扫码查看
针对传统电能质量扰动(power quality disturbances,PQDs)分类器人工选取特征过程复杂、精细化程度不足的问题,提出一种基于马尔科夫迁移场(Markov translate filed,MTF)可视化和改进密集卷积网络(dense convolu-tional networks,DenseNet)的PQDs识别新方法.首先将一维PQD信号经MTF映射为二维图像,接着将图像输入到具有新型通道注意力机制的改进DenseNet中,最后训练网络自行从海量样本中提取特征,实现PQDs信号的正确识别.算例结果表明:在无噪声和信噪比为20、30 dB情况下,所提改进DenseNet能有效克服传统方法中主观性强、抗噪性能差等特征缺点,可以更好地提取复合PQD特征信息,对复合PQD识别率高.
An identification method based on MTF visualization and improved DenseNet for power quality disturbances
Aiming at the problems of complex process and insufficient refinement of artificial feature selection in traditional power quality disturbances (PQDs) classifier,a new PQD recognition method based on Markov transition field visualization and improved DenseNet is proposed. Firstly,the one-dimensional PQD signal is mapped into a two-dimensional image by MTF. Then,the image is input into an improved DenseNet with a new channel attention mechanism. Finally,the network is trained to extract features from a large number of samples by itself,so as to realize the correct recognition of PQD signals. The example results show that:in the case of no noise and signal-to-noise ratio of 20dB and 30dB,the proposed improved DenseNet can effectively overcome the shortcomings of traditional methods,such as strong subjectivity of feature selection and poor anti-noise performance. It can better extract the feature information of complex PQD,and has a high recognition rate for complex PQD.

power quality disturbanceMarkov translate fieldvisualizationdense convolutional networkschannel attention mechanismclassification and recognition

时帅、陈子文、黄冬梅、贺琪、孙园、胡伟

展开 >

上海电力大学电气工程学院,上海 200090

上海电力大学计算机与技术学院,上海 200090

上海海洋大学信息学院,上海 201306

上海电力大学数理学院,上海 200090

上海电力大学经济与管理学院,上海 200090

展开 >

电能质量扰动 马尔科夫迁移场 可视化 密集卷积网络 通道注意力机制 分类识别

国家自然科学基金

61972240

2024

电力科学与技术学报
长沙理工大学

电力科学与技术学报

CSTPCD北大核心
影响因子:0.85
ISSN:1673-9140
年,卷(期):2024.39(4)