Spatial interpolation methods for 3D geological modeling of complex strata structures
Three-dimensional (3D) geological bodies are of great significance in natural resources exploration, environmental protection, natural disaster risk assessment, and other fields. In the modeling process, the accuracy of geological body models is directly related to interpolation algorithms. To study the applicability of different interpolation algorithms, this paper con-ducted shallow 3D geological modeling in a heavy metal pollution area in Luliang, Yunnan. The inverse distance weighting method and natural neighborhood method were selected to interpolate the drilling data in the study area. Visual inspection and error comparison were carried out of the model results. The results show that the inverse distance weighting method has a wider applicability range and higher modeling accuracy. Compared to the natural neighborhood method, the inverse dis-tance weighting method is more suitable for complex geological modeling with distinct stratigraphic structures, providing a more detailed description of fault details and a model that better reflects reality. On the other hand, the natural neighbor-hood method has poor interpolation performance in areas with distinct faults and is not suitable for complex stratigraphic structures.
3D geological modeldrill datainverse distance weighting methodnatural neighborhood methodaccuracy verification