首页|面向智慧城市的地质大数据应用模式研究

面向智慧城市的地质大数据应用模式研究

扫码查看
构建一种"地质大数据+X"的应用模式,推动智慧城市建设向低碳、集约方向发展.应用结果表明:基于"地质大数据+BIM"应用模式,实现城市地下溶洞的分布位置及规模可视化,辅助重大工程规划决策分析,在施工过程中有效规避地下管线,减少施工对地下管线的破坏;2013-2016年南宁市万象城地铁站最大平均沉降速率为10.89 mm·a-1,累积形变量-31.4 mm,通过"地质大数据+InSAR"应用模式探明地面发生沉降的主要原因为地铁基坑开挖导致的地面承载力下降;通过对地质大数据的插值分析,获取了地铁1号线缓冲500 m范围内圆砾层的厚度等值线图,其中清川站及广西大学站区间圆砾层厚度大于10 m,长期的地下水侵蚀及压力渗透作用将会影响地铁隧道的使用寿命,应进一步加强地铁隧道防渗监测.
Research on application mode of geological big data for smart cities
This paper aims at constructing an application model of"geological big data+X"to promote the low-carbon and in-tensive development of smart city construction.Application results show that:the application mode of"geological big data+BIM"can help realize the visualization of the distribution locations and scales of underground karst caves,assist the decision analy-sis of major project planning,avoid collision between construction and pipeline,and reduce the construction damage to under-ground pipelines.The maximum average settlement rate of Wanxiangcheng Subway Station in Nanning was 10.89 mm·a-1 from 2013 to 2016,with a cumulative deformation of-31.4 mm.Through the application of"geological big data+InSAR"model,it is found that the main reason for settlement is the decrease of ground bearing capacity caused by subway foundation pit excavation.The contour map of the round gravel layer thickness in the buffer radius of subway line 1 within 500 m is obtained by interpola-tion analysis of the geological big data.The thickness of the round gravel layer is more than 10 m between Qingchuan Station and Guangxi University Station.Long-term erosion by groundwater and pressure infiltration may affect the service life of the subway tunnel,necessitating enhanced monitoring of tunnel seepage.

geological big datasmart cityvisualization platformunderground space development

文诗宝、许国、卢鹏、黄梅婷、冯健、赵勇

展开 >

南宁市勘测设计院集团有限公司,广西南宁 530022

南宁市浅表地质大数据工程技术研究中心,广西 南宁 530022

地质大数据 智慧城市 可视化平台 地下空间开发

2024

城市地质
北京市地质矿产勘查开发局

城市地质

影响因子:0.505
ISSN:1007-1903
年,卷(期):2024.19(2)