首页|基于EKF与线性回归的锂离子电池状态估计

基于EKF与线性回归的锂离子电池状态估计

扫码查看
锂离子电池因其高能量密度、长寿命、低自放电率等特性,在社会各领域被应用广泛,成为现代科技和社会发展的重要基石。但锂离子电池包含复杂的电化学系统,状态检测难度较大,不利于供电系统的稳定性与可靠性。文章结合EKF(扩展卡尔曼滤波)与线性回归方法,构建了一种携行锂离子电池的状态(含SOC与SOH)估计模型。实验验证表明,该模型能有效估计电池的SOC与SOH,其中SOC平均估计误差为 1。54%,最大SOH估计误差为 2。73%。
Estimation of Lithium-ion Batteries'State Based on EKF and Linear Regression
Due to high energy density,long life,and low self-discharge rate,lithium-ion batteries are widely used in various fields of society and have become an important cornerstone of modern technology and social development.However,lithium-ion batteries contain complex electrochemical systems,making state detection difficult and harmful to the stability and reliability of the power supply system.The article combined EKF(Extended Kalman Filter)and linear regression to construct a state(including SOC and SOH)estimation model for some kind of portable lithium-ion batteries.Experimental verification showed that the model can effectively estimate SOC and SOH,with an average SOC estimation error of 1.54%and a maximum SOH estimation error of 2.73%.

EKFlinear regressionlithium-ion batteriesstate estimation

雷雨、刘凡、刘小丽、宋瑞琦

展开 >

陆军工程大学通信士官学校,重庆 400035

EKF 线性回归 锂电子电池 状态估计

2024

长沙航空职业技术学院学报
长沙航空职业技术学院

长沙航空职业技术学院学报

影响因子:0.373
ISSN:1671-9654
年,卷(期):2024.24(4)