首页|基于改进粒子群算法的拱桥索力优化

基于改进粒子群算法的拱桥索力优化

扫码查看
为了使拱桥在成桥状态下的索力分布合理,进而使拱桥结构整体受力状态良好,基于改进粒子群算法,根据最小应变能原理以及影响矩阵法对主拱圈的弯矩和轴力加以约束,得到了拱桥索力优化的目标函数,并建立了拱桥索力优化模型。以国内某钢筋混凝土拱桥为工程实例,利用MATLAB软件及有限元软件ANSYS对该桥的索力进行优化,并与其他方法得到的索力进行对比。研究结果表明:改进粒子群算法相较于标准粒子群算法具有更强的全局寻优能力,能有效避免标准粒子群算法易陷入局部最优和早熟收敛的问题,且其收敛速度和收敛精度均有所提高;与传统的未知荷载系数法及最小弯曲能量法相比,由改进粒子群算法得到的拱桥索力的分布更加合理,索力峰值下降明显,各索力之间的波动幅度也较小。
Cable force optimization of arch bridges based on improved particle swarm algorithm
This study aims to make the cable force distribution of arch bridges reasonable in the bridge state and then the overall stress state of the arch bridge structure good.With the help of the improved particle swarm algorithm,the bending moment and axial force of the main arch ring are constrained according to the principle of minimum strain energy and the influence matrix method.For the cable force optimization of arch bridges,the objective function is obtained,and the model is established.A domestic reinforced concrete arch bridge is taken as an engineering example.MATLAB and finite element software ANSYS are used to optimize the cable force of the bridge,and the optimized cable force is compared with those obtained by other methods.The research shows that in terms of global optimization capability,the improved particle swarm algorithm outperforms the standard particle swarm algorithm.The improved particle swarm algorithm can effectively avoid the drawbacks of being easily trapped in local optima and premature convergence that exist in the standard particle swarm algorithm and has improvement in the convergence speed and convergence accuracy in the iterative process.Compared with the traditional unknown load coefficient method and the minimum bending energy method,the improved particle swarm algorithm makes the cable force distribution of arch bridges more reasonable,decreases the peak value of the cable force significantly,and reduces the fluctuation amplitude between cable forces.

arch bridgecable force optimizationimproved particle swarm algorithminfluence matrix

田仲初、钟忠

展开 >

长沙理工大学 土木工程学院,湖南 长沙 410114

拱桥 索力优化 改进粒子群算法 影响矩阵

2024

交通科学与工程
长沙理工大学

交通科学与工程

影响因子:0.444
ISSN:1674-599X
年,卷(期):2024.40(6)