首页|基于时序InSAR的昆明地铁沿线地表沉降分析与预测

基于时序InSAR的昆明地铁沿线地表沉降分析与预测

扫码查看
针对当前地铁网络地面沉降的研究主要集中在北上广深等大型城市,缺少对西部复杂地质地区地铁网络地面沉降的系统研究,本文基于PS-InSAR技术获取了2018年-2022年昆明市地铁沿线地表沉降监测结果,根据其建立LSTM地表沉降预测模型,并对典型区域进行未来预测.结果表明:地表沉降速率在一定程度上与地质复杂程度呈正相关;LSTM地表沉降预测模型有较高的精度;在预测过程发现此类模型不适用于长期预测,长期预测结果会出现周期性震荡,导致模型失效.尽管LSTM模型只适用于短期预测,但其预测结果可以作为辅助决策、早期预警.
Analysis and Prediction of Land Surface Subsidence Along Kunming Metro Based on InSAR
Current researches on the ground subsidence of metro network mainly focus on large cities such as Beijing,Shanghai,Guang-zhou and Shenzhen,but has few of them on systematic research on the ground subsidence of metro network in complex geological areas in west-ern China.Based on PS-InSAR technology,this paper obtains the monitoring results of ground subsidence along Kunming metro during 2018-2022,and then establishes the LSTM surface subsidence prediction model according to it.Moreover,future prediction for typical areas was made.The results show that the surface subsidence rate is positively correlated with the geological complexity to some extent.LSTM surface subsidence prediction model has high accuracy.In the process of prediction,it is found that this kind of model is not suitable for long-term forecast,for long-term forecast results will appear periodic oscillation,resulting in model failure.Although the LSTM model is only suitable for short-term prediction,its prediction results can be used as auxiliary decision-making and early warning.

land subsidencePS-INSARpredictive analysisLSTM

陈聪、董燕

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650093

地面沉降 PS-InSAR 预测分析 LSTM

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(2)
  • 12