首页|基于机载LiDAR的高山峡谷区滑坡特征分析

基于机载LiDAR的高山峡谷区滑坡特征分析

扫码查看
针对传统的航空遥感技术与航天卫星遥感技术对高山峡谷区滑坡分析中存在的问题:无法在植被或阴影覆盖处准确地识别地形特征,对于微观地形分析更加无能为力.该论文提出了一种基于机载LiDAR点云的滑坡特征提取方法,包括点云预处理、特征参数提取和滑坡区域划分等步骤.实验结果表明,该方法可以快速、精确地提取出高山峡谷典型区域的滑坡特征,同时提高了滑坡监测的效率和数据准确性,具有实际应用价值,并最大程度上优化了传统技术的不足,较好解决了传统技术受制于地理环境的限制以及精度不足的问题.实现了对高山峡谷区滑坡特征的有效识别和解译.预计该方法将在地质灾害监测和评估等领域得到广泛应用,以提高监测和预警的效率和准确性.
Analysis of Landslide Characteristics in High Mountain Canyon Areas Based on Airborne LiDAR
In response to the problem of traditional aerial remote sensing technology and space satellite remote sensing technology in ana-lyzing landslides in high mountain and canyon areas,it is difficult to accurately identify terrain features in vegetation or shadow coverage are-as,and is even more powerless for micro terrain analysis. This article proposes a landslide feature extraction method based on airborne LiDAR point clouds,including point cloud preprocessing,feature parameter extraction,and landslide area division. The experimental results show that this method can quickly and accurately extract landslide features in typical areas of high mountain canyons,while improving the efficiency and data accuracy of landslide monitoring. It has practical application value and maximizes the shortcomings of traditional technology,effectively solving the problems of traditional technology being limited by geographical environment and insufficient accuracy. Effective recognition and interpretation of landslide characteristics in high mountain canyon areas have been achieved. It is expected that this method will be widely ap-plied in fields such as geological disaster monitoring and assessment to improve the efficiency and accuracy of monitoring and early warning.

airborne radarpoint cloudpreprocessingfeature extractionlandslide analysis

赵昌福、吕杰

展开 >

昆明理工大学 国土资源工程学院,云南 昆明 650093

昆明理工大学 城市学院,云南 昆明 650051

机载雷达 点云 预处理 特征提取 滑坡分析

国家自然科学基金项目教育部产学合作协同育人项目云南省教育厅基金项目昆明理工大学课程思政内涵式建设项目昆明理工大学宣传思想工作项目2022年度昆明理工大学分析测试基金2022年度昆明理工大学分析测试基金

622660262021010960332021J00471096202202162021A03-22022T201400902022M20212201154

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(3)