首页|基于机器学习优化的GNSS曲面高程拟合方法

基于机器学习优化的GNSS曲面高程拟合方法

扫码查看
针对在区域内大地高进行正常高转换过程中,出现的将传统曲面拟合方式和非线性机器学习算法割裂的现象.本文提出了使用BP神经网络和随机森林(RF)算法对线性曲面拟合方式进行优化,通过使用某矿区观测站的实测GNSS和水准数据进行实验,实验完成了对GNSS曲面拟合工作后,使用了机器学习算法进行再建模来进一步逼近真实高程信息.实验结果表明:在观测区域较大和高程异常不规则的情况下,使用BP神经网络对曲面拟合结果进行非线性优化能实现更加精确的GNSS高程拟合精度.为进一步提升对地高程观测精度提供了思路,对各类工程建设和矿区变形监测具有现实意义.
GNSS Surface Elevation Fitting Method Based on Machine Learning Optimization
To address the phenomenon that the traditional surface fitting method and the nonlinear machine learning algorithm are frag-mented in the process of normal height conversion of geodetic heights in the region. This paper proposes to optimize the linear surface fitting method by using BP neural network and random forest ( RF) algorithm,and conducts experiments by using the measured GNSS and level data from a mining observation station. The experimental results show that the nonlinear optimization of the surface fitting results using BP neural network can achieve more accurate GNSS elevation fitting accuracy in the case of large observation area and anomalous elevation irregularities. It provides an idea for further improving the accuracy of ground elevation observation,which is of practical significance for various engineering construction and mine deformation monitoring.

BP neural networkRF algorithmarea modelingelevation fitting

王志文

展开 >

中国建筑材料工业地质勘查中心山西总队,山西 太原 030031

BP神经网络 RF算法 区域建模 高程拟合

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(3)
  • 8