首页|一种改进ICP算法在建筑物配准中的应用

一种改进ICP算法在建筑物配准中的应用

扫码查看
近年来,采用多源数据融合建模已成为研究热点,而多源数据融合建模的关键是点云配准.点云配准目前应用最广的算法是迭代最近点算法(ICP),然而该算法存在对点云初始位置要求高和收敛速度慢的缺点.故提出使用样本共识初始配准算法(SAC-IA)进行初配准,和采用改进的ICP算法进行精配准的方案,用于建筑物配准.实验结果表明,此算法对比传统点云配准算法,配准速度和精度都有极大提高.
Application of an Improved ICP Algorithm in Building Registration
In recent years,using multi-source data fusion modeling has become a research hotspot,and the key to multi-source data fu-sion modeling is point cloud registration. The most widely used algorithm for point cloud registration is the Iterative Nearest Point Algorithm (ICP),however,this algorithm has the drawbacks of high requirements for the initial position of the point cloud and slow convergence speed. Therefore,it is proposed to use the Sample Consensus Initial Registration Algorithm ( SAC-IA) for initial registration and the improved ICP algorithm for precise registration for building registration. The experimental results show that this algorithm has greatly improved registration speed and accuracy compared to traditional point cloud registration algorithms.

buildingmulti-source datapoint cloud registrationICP algorithm

黄山、吴学群

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650093

建筑物 多源数据 点云配准 ICP算法

国家自然科学基金地区基金项目国家自然科学基金地区基金项目

4196105341961039

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(4)