首页|基于SSA-RBF神经网络模型在岩溶地下水位预测中的研究

基于SSA-RBF神经网络模型在岩溶地下水位预测中的研究

扫码查看
以武汉地区岩溶地下水位精准预测为研究对象,建立了基于奇异谱分析方法(SSA)改进的RBF神经网络时间序列预测模型:首先利用SSA对地下水位实时监测数据进行去噪处理提取水位变化趋势,再利用径向基(RBF)神经网络时间序列模型对去噪后的数据进行预测.选取2020—2021年武汉地区的岩溶水位数据进行处理分析,结果表明:①基于SSA改进的RBF神经网络模型较单独使用RBF神经网络模型预测精度提高了50%;②SSA-RBF神经网络预测模型在岩溶地下水位的预测方面表现良好,对未来24小时岩溶地下水位的预测误差最大不大于0.2 m,预测精度达到99%以上.
Research on Karst Groundwater Level Prediction Based on SSA-RBF Neural Network Model
In this paper,an improved RBF neural network time series prediction model based on the Singular Spectrum Analysis( SSA) method was established,and the real-time monitoring data of groundwater level was denoised by SSA to extract the water level change trend,and then the radial basis( RBF) neural network time series model was used to predict the denoised data. The karst water level data from 2020 to 2021 in Wuhan were selected for processing and analysis,and the results showed that:①the prediction accuracy of the improved RBF neu-ral network model based on SSA was 50% higher than that of the RBF neural network model alone;②The SSA-RBF neural network prediction model performed well in the prediction of karst groundwater level,and the maximum prediction error of karst groundwater level in the next 24 hours was not more than 0.2m,and the prediction accuracy reached more than 99%.

karst groundwater predictionSSAradial basis neural network

郑世龙、李虎、王中华、柯洋、张占彪

展开 >

武汉市勘察设计有限公司,湖北 武汉 430000

岩溶地下水预测 奇异谱分析方法 径向基神经网络

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(4)