首页|基于IV-ELM模型在泥石流易发性评价中的精度影响研究

基于IV-ELM模型在泥石流易发性评价中的精度影响研究

扫码查看
泥石流是最严重的地质灾害之一,严重影响各类工程建设和居民安全.因此,在各类工程建设中,如何避开泥石流易发区,为各类工程建设选址提供可靠的泥石流易发性评价图是十分重要的工作.本文以维西县泥石流灾害为研究对象,选取研究区的高程、坡度、工程岩组、河流密度、断层密度、道路密度、年均降雨量(2013-2022)、归一化的植被覆盖指数(NDVI)、地形地貌、植被类型作为研究区泥石流的致灾因子.利用信息量法(IV,Information Value)对非泥石流样本数据进行提纯用以优化极限学习机模型(IV-ELM)对研究区进行泥石流易发性评价,并和传统的极限学习机(ELM)和信息量(IV)模型的精度进行比较.结果表明,经过提纯后的极限学习机模型(IV-ELM)的AUC值为 0.998 8相比于IV模型和ELM模型提高了 0.089 3和 0.111 3,极高易发区频率比相比于IV模型和ELM模型提高了0.38和0.29.
Research on the Precision Impact of IV-ELM Model in the Evaluation of Debris Flow Susceptibility
Debris flows are among the most severe geological disasters,significantly impacting various construction projects and the safety of residents.Therefore,in the construction of various projects,it is crucial to avoid debris flow-prone areas and provide reliable debris flow susceptibility assessment maps for the selection of construction sites.This paper takes the debris flow disasters in Weixi County as the research subject and selects factors such as elevation,slope,engineering lithology,river density,fault density,road density,average annual rainfall(2013-2022),Normalized Difference Vegetation Index(NDVI),topography,and vegetation type as the causative factors of debris flows in the study area.The Information Value(IV)method is used to refine non-debris flow sample data to optimize the Extreme Learning Machine(ELM)model for debris flow susceptibility assessment in the study area,and the accuracy is compared with traditional ELM and IV models.The results show that the AUC(Area Under the Curve)value of the refined Extreme Learning Machine model(IV-ELM)is 0.9988,which is an improvement of 0.0893 and 0.1113 over the IV model and the ELM model,respectively.The frequency of very high susceptibility areas is increased by 0.38 and 0.29 compared to the IV model and the ELM model,respectively.

debris flowinformation valueExtreme Learning Machinesusceptibilitymachine learning

廖青松、阿发友、黄胜东、曹得志

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650093

自然资源部高原山地地质灾害预报预警与生态保护修复重点实验室,云南 昆明 650000

云南省高原山地地质灾害预报预警与生态保护修复重点实验室,云南 昆明 650000

云南地质工程勘察设计研究院有限公司,云南 昆明 650041

展开 >

泥石流 信息量 极限学习机 易发性 机器学习

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(5)