首页|融合面向对象与CNN的填海造地识别方法研究

融合面向对象与CNN的填海造地识别方法研究

扫码查看
本研究旨在探索面向对象分析与深度学习模型,特别是卷积神经网络(CNN)的融合应用,以提高填海造地监测的准确性和效率,以粤港澳大湾区为研究区域,利用填海造地目标地物的几何与语义特征,采用面向对象技术对遥感影像进行精确分割基础上,通过CNN模型的多层卷积和池化操作进一步提取地物的高级特征并进行分类,通过与标注的训练样本比较,并以准确度和召回率作为评估标准,验证了模型分类精度.结果显示:该方法在准确率、召回率和F1 分数等关键评价指标上表现优异,在识别准确性和鲁棒性方面均优于传统方法,为填海造地监测快速识别提供新的技术方法.
Research on Fill Land Identification Method Integrating Object-Oriented Analysis and CNN
This study aims to explore the integration of object-oriented analysis with deep learning models,particularly Convolutional Neural Networks(CNN),to enhance the accuracy and efficiency of reclaimed land monitoring.Focusing on the Guangdong-Hong Kong-Ma-cao Greater Bay Area as the research region,the geometric and semantic features of reclaimed land targets are utilized.Based on the precise segmentation of remote sensing images using object-oriented techniques,the model further extracts advanced features of land targets and con-ducts classification through multi-layer convolution and pooling operations of the CNN model.The model's classification accuracy is verified by comparing with annotated training samples,using accuracy and recall rate as evaluation criteria.The results show that this method performs excellently in key evaluation metrics such as accuracy,recall rate,and F1 score.It surpasses traditional methods in terms of identification ac-curacy and robustness,providing a new technical approach for rapid identification in reclaimed land monitoring.

land reclamationobject-oriented analysisconvolutional neural networkGreater Bay Area of Guangdong,Hong Kong,and Macau

官玉水

展开 >

广州市南沙区土地利用发展中心,广东 广州 511455

填海造地 面向对象 卷积神经网络 粤港澳大湾区

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(6)