首页|基于改进YOLOX的遥感影像目标检测方法

基于改进YOLOX的遥感影像目标检测方法

扫码查看
针对遥感影像背景复杂,影像内不同类别目标间尺寸差异较大,现有模型对于其内小尺寸目标检测精度较低的问题,对YOLOX进行改进,实现了一种遥感影像目标检测方法.在骨干网络内引入位置注意力模块,让模型专注学习正样本特征;使用双层加权特征金字塔代替现有特征融合网络,并在检测端使用上下文解耦检测头对目标框回归与目标分类任务充分分解.实验结果表明,本文模型在测试集上的平均精度均值达到 90.14%,较YOLOX模型提高了 9.97%,较YOLOv8 模型提高了 4.34%,单张图像的检测速度仅为 0.019 s,具有实时检测能力.
Remote Sensing Image Target Detection Method Based on Improved YOLOX
In view of the complex background of remote sensing images,the large size differences between different categories of targets in the images,and the low accuracy of existing models in detecting small-sized targets,YOLOX was improved to implement a remote sensing im-age target detection method.A position attention module is introduced into the backbone network to allow the model to focus on learning posi-tive sample features;a two-layer weighted feature pyramid is used to replace the existing feature fusion network,and a context decoupling de-tection head is used on the detection end to fully perform the target frame regression and target classification tasks break down.Experimental results show that the average accuracy of this model on the test set reaches 90.14%,which is 9.97%higher than the YOLOX model and 4.34%higher than the YOLOv8 model.The detection speed of a single image is only 0.019 s,with real-time detection capabilities.

remote sensing target detectionYOLOXposition attention mechanismweighted bidirectional feature pyramidcontext de-coupling head

肖虎

展开 >

湖北省核工业地质局,湖北 孝感 432000

遥感目标检测 YOLOX 位置注意力机制 加权双向特征金字塔 上下文解耦头

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(6)