首页|基于PS-InSAR和改进CNN网络的城市地面沉降监测及预测

基于PS-InSAR和改进CNN网络的城市地面沉降监测及预测

扫码查看
基于近年来城市地面沉降对城市设施造成不同程度的破坏,传统的监测方法无法满足大范围长时间的监测要求的目的,采用PS-InSAR和GACOS产品对 2019 年 1 月—2022 年 12 月某城市 120 景Sentinel-1 升轨影像进行数据处理的方法,得到了沉降速率为-58.18~22.51 mm/a.在此基础上,得到 7 个典型地表沉降区并分析其时空分布特征.最后选取B沉降区内 1 000个沉降点利用CNN和改进的CNN预测模型进行预测分析,得到预测值的R2 和均方根误差均得到了改善.实验结果显示,结合PS-InSAR技术和改进的CNN网络进行城市地面沉降预测的方法,能为未来城市地面沉降监测和城市灾害预警提供有价值的参考.
Monitoring and Forecasting of Urban Land Subsidence Based on PS-InSAR and Improved CNN Network
Based on the purpose that urban surface subsidence has caused different degrees of damage to urban facilities in recent years,and the traditional monitoring methods cannot meet the requirements of large-scale and long-time monitoring,the method of data processing of 120-view Sentinel-1 ascending orbit images of a city from January 2019 to December 2022 using PS-InSAR and GACOS products is used to obtain the subsidence rate of-58.18mm/a~22.51mm/a.On this basis,seven typical surface subsidence zones are obtained and their spatial and temporal distribution characteristics are analysed.Finally,1000 subsidence points within the B subsidence zone were selected for predic-tion analysis using CNN and improved CNN prediction models,and the R2 and root mean square error of the predicted values were obtained to be improved.The experimental results show that the combination of PS-InSAR technology and improved CNN network for urban ground settle-ment prediction can provide a valuable reference for future urban ground settlement monitoring and urban disaster warning.

land subsidencePS-InSARSentinel-1CNN networkdisaster warning

高帅、李响、任干、马全明、刘运明

展开 >

北京城建勘测设计研究院有限责任公司,北京 100101

城市轨道交通深基坑岩土工程北京市重点实验室,北京 100101

地面沉降 PS-InSAR Sentinel-1 CNN网络 灾害预警

2024

城市勘测
中国城市规划协会 武汉市测绘研究院

城市勘测

影响因子:0.488
ISSN:1672-8262
年,卷(期):2024.(6)