首页|伪导联:用于运动想象解码的时间嵌入方法

伪导联:用于运动想象解码的时间嵌入方法

扫码查看
基于运动想象(Motor imagery,MI)的脑电图(Electroencephalogram,EEG)研究在实现外部设备的神经控制和神经康复方面处于前沿地位。本研究提出了一种新颖的时间嵌入技术,称为基于行波的时间嵌入,并将其作为伪通道用于增强多种神经网络架构中MI-EEG信号的解码精度。与传统神经网络方法无法考虑个体差异的时间动态性不同,我们的方法基于先验知识捕捉了不同参与者的时间相关变化。通过对多名参与者的大量实验表明,该方法不仅提高了分类准确性,而且在适应个体差异方面优于Transformer架构中的位置编码。研究结果显示,基于行波的时间嵌入显著提高了那些通常被认为是"脑电文盲"参与者的解码精度。作为EEG研究的新方向,基于行波的时间嵌入不仅为神经网络解码策略提供了新的见解,还为神经科学中的注意力机制研究和对EEG信号的深入理解开辟了新的研究途径。
Pseudo channel:time embedding for motor imagery decoding
Motor imagery (MI) based electroencephalogram(EEG) represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered "EEG-illiteracy".As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals.

motor imagery(MI)pseudo channelelectroencephalogram (EEG)neural networks

苗政清、赵美蓉

展开 >

天津大学精密测试技术与仪器国家重点实验室,天津 300072

维也纳大学计算机科学学院神经信息学研究团队,维也纳 1090,奥地利

运动想象 伪通道 脑电图 神经网络

Ernst-Mach scholarship

2024

测试科学与仪器
中北大学

测试科学与仪器

影响因子:0.111
ISSN:1674-8042
年,卷(期):2024.15(3)