Effects of temperature,particle size,and air humidity on sensibility of typical high-energetic explosives
The production and utilization of high-energetic explosives often pose a range of safety hazards,with sensitivity being a key factor in evaluating these risks.To investigate how temperature,particle size,and air humidity affect the responsiveness of commonly used high-energetic explosives,a series of BAM(Bundesanstalt für Materialforschung und-prüfung) impact and friction sensitivity tests were carried out to determine the critical impact energy and critical load pressure of four representative high-energetic explosives (RDX,HMX,PETN and CL-20) under different temperatures,particle sizes,and air humidity conditions.The experimental findings facilitated an examination of temperature and particle size affecting the sensitivity of high-energetic explosives,along with an assessment of the influence of air humidity on sensitivity testing.The results clearly indicate that high-energetic explosives display a substantial decline in critical reaction energy when subjected to micrometre-sized particles and an air humidity level of 45% at a temperature of 90 ℃.Furthermore,it was noted that the critical reaction energy of high-energetic explosives diminishes with an increase in temperature within 25 ℃-90 ℃.In the same vein,as the particle sizes of high-energetic explosives increase,so does the critical reaction energy for micrometre-sized particles.High air humidity significantly affects the sensitivity testing of high-energetic explosives,emphasizing the importance of refraining from conducting sensitivity tests in such conditions.
high-energetic explosivestemperatureparticle sizeair humiditycritical reaction energy