首页|基于电流与红外图像异构数据融合的交流电机滚动轴承故障诊断方法

基于电流与红外图像异构数据融合的交流电机滚动轴承故障诊断方法

扫码查看
为提高电机在非平稳工况下运行时滚动轴承故障诊断的准确率,本文提出一种基于电流与红外图像异构数据融合的交流电机滚动轴承故障诊断方法。首先,使用VMD分解电机电流信号,提取轴承故障信号所在的低频段分量;在此基础上,将低频段电流信号转化为适用于卷积神经网络的二维图,并利用卷积神经网络及softmax分类器对数据集进行分类。其次,对红外图像进行图像分割并提取故障特征,从而与库中故障轴承红外图像进行相似度计算,进一步利用sigmod分类器对数据进行分类。最后,引入一种决策级融合的方法,将电流信号与红外图像信号诊断结果按权重进行融合,获得电机轴承故障诊断结果。通过实验验证,本文提出的故障诊断方法在载荷变动情况下均可以进行电机轴承外环故障诊断,故障诊断的准确率可达98。85%。
Fault diagnosis method of AC motor rolling bearing based on heterogeneous data fusion of current and infrared image
In order to improve the accuracy of rolling bearing fault diagnosis when the motor is running under non-stationary conditions,an AC motor rolling bearing fault diagnosis method was proposed based on heterogeneous data fusion of current and infrared images.Firstly,VMD was used to decompose the motor current signal and extract the low-frequency component of the bearing fault signal.On this basis,the current signal was transformed into a two-dimensional graph suitable for convolutional neural network,and the data set was classified by convolutional neural network and softmax classifier.Secondly,the infrared image was segmented and the fault features were extracted,so as to calculate the similarity with the infrared image of the fault bearing in the library,and further the sigmod classifier was used to classify the data.Finally,a decision-level fusion method was introduced to fuse the current signal with the infrared image signal diagnosis result according to the weight,and the motor bearing fault diagnosis result was obtained.Through experimental verification,the proposed fault diagnosis method could be used for the fault diagnosis of motor bearing outer ring under the condition of load variation,and the accuracy of fault diagnosis can reach 98.85%.

current signalinfrared imagedecision level fusionrolling bearingfault diagnosis

刘沛津、郭子辰、何林、晏东阳、张香瑞

展开 >

西安建筑科技大学 机电工程学院,陕西西安 710055

西安建筑科技大学理学院,陕西西安 710055

电流信号 红外图像 决策级融合 滚动轴承 故障诊断

2024

测试科学与仪器
中北大学

测试科学与仪器

影响因子:0.111
ISSN:1674-8042
年,卷(期):2024.15(4)