首页|氢环境下金属材料的疲劳寿命预测:从裂纹的角度

氢环境下金属材料的疲劳寿命预测:从裂纹的角度

扫码查看
随着氢能技术的快速发展,金属设备在氢环境下的运用越发广泛.然而,氢脆效应可显著削弱金属材料的疲劳性能,为相关设备的安全性埋下了隐患.因此,精准预测氢环境下金属材料的疲劳寿命具有重要意义.本文系统分析了氢环境下金属材料的疲劳裂纹扩展行为,总结了氢脆效应下各参数对疲劳裂纹扩展速率的影响.同时,调研并分析了氢环境下金属材料疲劳性能的研究及寿命预测方法的应用.氢环境下金属材料的疲劳裂纹扩展速率测算结果可作为输入进行计算材料的疲劳寿命,但研究发现疲劳裂纹扩展速率受多种参数的综合影响.尽管断裂力学的方法是疲劳裂纹扩展阶段常用的方法,也是氢环境下疲劳寿命预测的常用理论,但其求解效率尚有待提高.机器学习凭借其高效准确的预测性能,被广泛应用于各类疲劳问题的寿命预测中,但其在氢环境下金属材料的疲劳寿命预测领域尚少见.若能采用相关数据增强的方法扩充氢环境下的疲劳寿命数据,进而采用机器学习的方法进行寿命预测,将有望显著提升氢环境下金属材料疲劳寿命预测的效率.
Fatigue life prediction of metal materials in hydrogen environment based on cracks
With the rapid development of hydrogen energy technology,metal equipment is increasingly used in hydrogen environments.However,the hydrogen embrittlement effect will significantly weaken the fatigue performance of metal materials,posing hidden dangers to the safety of related equipment.Therefore,it is of great significance to accurately predict the fatigue life of metal materials in a hydrogen environment.This paper systematically analyzed the fatigue crack growth behavior of metal materials in a hydrogen environment and summarized the effects of various parameters on the fatigue crack growth rate under the hydrogen embrittlement effect.At the same time,the research on fatigue properties of metal materials in a hydrogen environment and the application of fatigue life prediction methods were investigated.The fatigue crack growth rate of metal materials in hydrogen environment can be used as an input to calculate the fatigue life of materials,but research has found that the fatigue crack growth rate is affected by a variety of parameters.Although the method based on fracture mechanics is commonly used in the fatigue crack growth stage and serves as a commonly used theory for fatigue life prediction in a hydrogen environment,its solution efficiency needs to be improved.With its efficient and accurate prediction performance,machine learning is widely used in the life prediction of various fatigue problems.However,it is still less applied in the field of fatigue life prediction of metal materials in a hydrogen environment.If relevant data enhancement methods can be used to expand fatigue life data in hydrogen environments,machine learning-based methods can be used for life prediction,which may significantly improve the efficiency of fatigue life prediction of metal materials in hydrogen environments.

hydrogen environmentfatigue performancecrack growthlife predictionmachine learning

聂鹏、杨世源、郭永强、王永金、潘立栋、张家铭、孟德彪

展开 >

电子科技大学机械与电气工程学院,四川成都 611731

电子科技大学广东电子信息工程研究院,广东东莞 523808

中国机械总院集团北京机电研究所有限公司,北京 100089

北京科技大学材料科学与工程学院,北京 100083

展开 >

氢环境 疲劳性能 裂纹扩展 寿命预测 机器学习

2024

长沙理工大学学报(自然科学版)
长沙理工大学

长沙理工大学学报(自然科学版)

影响因子:0.63
ISSN:1672-9331
年,卷(期):2024.21(4)