首页|基于卷积神经网络算法的高压发电机保护研究

基于卷积神经网络算法的高压发电机保护研究

扫码查看
[目的]研究一种基于卷积神经网络算法的定子单相接地故障保护方法,以提高高压发电机定子单相接地保护的可靠性.[方法]首先,采用改进变分模态分解(variational mode decomposition,VMD)方法处理故障时序数据;接着,针对分解后的多个本征模态函数(intrinsic mode function,IMF)分量提取组合峭度、综合能量熵、综合凹凸系数,并将其构成融合特征向量;然后,采用放射性填充策略将融合特征向量升维,并将其输入卷积神经网络(convolutional neural network,CNN)算法以获得高压发电机故障判别结果;最后,为了验证该保护方法在不同运行方式下的适用性,利用电力系统仿真软件PSCAD/EMTDC,搭建了由三台高压发电机构成的系统仿真模型.[结果]本文所提保护方法可以提高判别准确率,显著减少不同中性点接地方式、故障初始角、故障位置、过渡电阻的影响,且抗噪声能力更强.[结论]本文所提保护方法判别精度高,可靠性强,适用于多种运行方式下的高压发电机定子单相接地故障保护.
Research on protection for Powerformers based on CNN algorithm
[Purposes]This paper aims to study a stator single-phase ground fault protection method based on a convolutional neural network(CNN)algorithm,so as to improve the reliability of stator single-phase ground fault protection for Powerformers.[Methods]First,an improved variational mode decomposition(VMD)method was used to process fault time-series data.Next,combined kurtosis,comprehensive energy entropy,and comprehensive concavity coefficients were extracted from the decomposed intrinsic mode function(IMF)components to form a fused feature vector.Then,a radiative padding strategy was applied to enhance the feature vector dimensionality,which was input into the CNN algorithm to determine the fault identification results of the Powerformer.Finally,to verify the method's applicability under different operating conditions,a system simulation model consisting of three Powerformers was built by using the PSCAD/EMTDC power system simulation software.[Findings]The proposed protection method enhances identification accuracy,significantly reduces the impact of different neutral point grounding methods,fault initial angles,fault locations,and transition resistances,and demonstrates stronger noise resistance.[Conclusions]The proposed protection method achieves high identification accuracy and strong reliability,making it suitable for stator single-phase ground fault protection of Powerformers under various operating conditions.

relay protection of power systemPowerformerstator ground fault protectionvariational mode decompositionconvolutional neural network

李毓洋、王媛媛、罗晓敏

展开 >

长沙理工大学 电气与信息工程学院,湖南 长沙 410114

电力系统继电保护 高压发电机 定子接地故障保护 变分模态分解 卷积神经网络

2024

长沙理工大学学报(自然科学版)
长沙理工大学

长沙理工大学学报(自然科学版)

影响因子:0.63
ISSN:1672-9331
年,卷(期):2024.21(6)