首页|基于改进YOLOX与多级数据关联的行人多目标跟踪算法研究

基于改进YOLOX与多级数据关联的行人多目标跟踪算法研究

扫码查看
目标跟踪是计算机视觉领域的基本问题,行人多目标跟踪在智能监控、智慧交通等多个领域有着广泛的应用前景.然而实际跟踪场景中存在频繁遮挡、尺度变化等情况,给多目标跟踪算法带来了极大的挑战.为了进一步提升跟踪精度,在DeepSORT的基础上,提出一种基于改进YOLOX与多级数据关联的行人多目标跟踪算法.对于检测器,为了增强网络的特征表达能力,提高检测精度,在YOLOX骨架网络与颈部网络分别引入ECA通道注意力模块与ASFF自适应特征融合模块.对于身份识别特征,为了减少数据关联步骤的错误匹配数量,提高跟踪效率,使用轻量的OSNet重识别网络与NSA卡尔曼滤波获取目标特征.对于数据关联,为了减少身份切换次数,避免目标丢失,将检测与跟踪都进行分类处理,使用不同的相似性计算方法,实现基于检测置信度与轨迹状态的多级数据关联.实验结果表明:与改进前YOLOX与DeepSORT简单结合的算法相比,在YOLOX中引入ECA模块与ASFF模块使误检数量大幅降低,使用YOLOX-s模型时降幅可达17%;结合OSNet模型与NSA卡尔曼滤波的特征提取方法能提高跟踪稳定性,IDF1指标提高0.77%,IDSW减少947;基于检测置信度与轨迹状态的多级数据关联算法可以明显改善跟踪性能,MOTA指标提升3.36%.算法最终在MOT17与MOT20测试集上的MOTA达80.4%与77.7%,IDF1达78.4%与76.7%.提出的行人多目标跟踪方法相较于其他先进算法在跟踪精度与跟踪速度上达到更好的平衡,可为工业上在线行人多目标跟踪应用提供参考.
Pedestrian multi-object tracking algorithm based on improved YOLOX and multi-level data association
Object tracking is a fundamental problem in the field of computer vision.Pedestrian multi-object tracking has broad application prospects in many fields such as intelligent surveillance and intelligent transportation.However,frequent occlusion and scale change exist in the actual tracking scene,which brings great challenges to the multi-object tracking algorithm.In order to further improve the tracking accuracy,on the basis of DeepSORT,a pedestrian multi-object tracking algorithm based on improved YOLOX and multi-level data association was proposed.For the detector,in order to enhance the feature expression ability of the network and improve the detection accuracy,the ECA channel attention module and the ASFF adaptive feature fusion module were introduced into the YOLOX skeleton network and the neck network respectively.For identification features,in order to reduce the number of false matches in the data association step and improve tracking efficiency,the lightweight OSNet re-identification network and NSA Kalman filter were used to obtain target features.For data association,in order to reduce the number of identity switching and avoid target loss,the detection and tracking were classified.The different similarity calculation methods were used to realize multi-level data association based on detection confidence and trajectory state.The experimental results show that compared with the algorithm that simply combines YOLOX and DeepSORT before improvement,the introduction of ECA module and ASFF module in YOLOX can reduce the number of false detections.The reduction can be up to 17%when using YOLOX-s model.The feature extraction method combining OSNet model and NSA Kalman filter can improve the tracking stability,the IDF1 index is increased by 0.77%,and the IDSW is reduced by 947.The multi-level data association algorithm based on detection confidence and trajectory state can significantly improve the tracking performance,and the MOTA index is increased by 3.36%.The results of MOTA on MOT17 and MOT20 test sets are 80.4%and 77.7%,and IDF1 are 78.4%and 76.7%.Compared with other advanced algorithms,the proposed pedestrian multi-object tracking method achieves a better balance between tracking accuracy and tracking speed,which can provide reference for online pedestrian multi-object tracking applications in industry.

multi-object trackingobject detectionattention mechanismdata associationcomputer vision

韩锟、彭晶莹

展开 >

中南大学 交通运输工程学院,湖南 长沙 410075

多目标跟踪 目标检测 注意力机制 数据关联 计算机视觉

湖南省自然科学基金资助项目

2016JJ4117

2024

铁道科学与工程学报
中南大学 中国铁道学会

铁道科学与工程学报

CSTPCD北大核心EI
影响因子:0.837
ISSN:1672-7029
年,卷(期):2024.21(1)
  • 2